Skip to main content
Log in

A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The amount of ammonia in exhaled breath has been linked to a variety of adverse medical conditions, including chronic kidney disease (CKD). The development of accurate, reliable breath sensors has the potential to improve medical care. Wavelength modulation spectroscopy with second harmonic normalized by the first harmonic (WMS 2f/1f) is a sensitive technique used in the development of calibration-free sensors. An ammonia gas sensor is designed and developed that uses a quantum cascade laser operating near 1,103.44 cm−1 and a multi-pass cell with an effective path length of 76.45 m. The sensor has a 7 ppbv detection limit and 5 % total uncertainty for breath measurements. The sensor was successfully used to detect ammonia in exhaled breath and compare healthy patients to patients diagnosed with CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. L. Narasimhan, W. Goodman, C. Patel, Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis. Proc. Nat. Acad. Sci. 98, 4617 (2001)

    Google Scholar 

  2. D. Kearney, T. Hubbard, D. Putnam, Breath ammonia measurement in helicobacter pylori infection. Dig. Dis. Sci. 47, 2523–2530 (2002)

    Article  Google Scholar 

  3. H. Wakabayashi, Y. Kuwabara, H. Murata, K. Kobashi, A. Watanabe, Measurement of the expiratory ammonia concentration and its clinical significance. Metab. Brain Dis. 12, 161–169 (1997)

    Article  Google Scholar 

  4. J. Manne, O. Sukhorukov, W. Jäger, J. Tulip, Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath. Appl. Opt. 45, 9230–9237 (2006)

    Article  ADS  Google Scholar 

  5. Y. Bakhirkin, A. Kosterev, G. Wysocki, F. Tittel, T. Risby, J. Bruno, Quantum cascade laser-based sensor platform for ammonia detection in exhaled human breath, in Laser Applications to Chemical, Security and Environmental Analysis, St. Petersburg, Florida, (Optical Society of America, Washington, DC, 2008)

  6. J. Manne, W. Jäger, J. Tulip, Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques. Appl. Phys. B 94(2), 337–344 (2009)

    Google Scholar 

  7. R. Lewicki, A. Kosterev, D. Thomazy, T. Risby, S. Solga, T. Schwartz, F. Tittel, Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor, in Proceedings of SPIE, vol. 7945 (2011), pp. 79450K-1–79450K-7

  8. L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion et al., The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110, 533–572 (2009)

    Article  ADS  Google Scholar 

  9. K. Sun, L. Tao, D. J. Miller, M. A. Khan, M. A. Zondlo, Inline multi-harmonic calibration method for open-path atmospheric ammonia measurements. Appl. Phys. B 110(2), 213–222 (2012)

    Google Scholar 

  10. K. Owen, Et. Es-sebbar, A. Farooq, Measurements of NH3 linestrengths and collisional broadening coefficients in N2, O2, CO2, H2O near 1103.46 cm1. J. Quant. Spectrosc. Radiat. Transf. 121, 56–68 (2013)

    Article  ADS  Google Scholar 

  11. G. Rieker, J. Jeffries, R. Hanson, Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 48, 5546–5560 (2009)

    Article  Google Scholar 

  12. A. Farooq, J. Jeffries, R. Hanson, Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7μm. Appl. Phys. B Lasers Opt. 96, 161–173 (2009)

    Article  ADS  Google Scholar 

  13. A. Farooq, J. Jeffries, R. Hanson, Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7 μm. Appl. Opt. 48, 6740–6753 (2009)

    Article  ADS  Google Scholar 

  14. H. Li, G. Rieker, X. Liu, J. Jeffries, R. Hanson, Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 45, 1052–1061 (2006)

    Article  ADS  Google Scholar 

  15. J. McManus, P. Kebabian, M. Zahniser, Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. Appl. Opt. 34, 3336–3348 (1995)

    Article  ADS  Google Scholar 

  16. J. McManus, M. Zahniser, D. Nelson, Dual quantum cascade laser trace gas instrument with astigmatic herriott cell at high pass number. Appl. Opt. 50, A74–A85 (2011)

    Article  ADS  Google Scholar 

  17. A. Schmohl, A. Miklos, P. Hess, Effects of adsorption-desorption processes on the response time and accuracy of photoacoustic detection of ammonia. Appl. Opt. 40, 2571–2578 (2001)

    Article  ADS  Google Scholar 

  18. I. Langmuir, The constitution and fundamental properties of solids and liquids. part i. solids. J. Am. Chem. Soc. 38, 2221–2295 (1916)

    Article  Google Scholar 

  19. S. Brunauer, P. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  ADS  Google Scholar 

  20. R. Yokelson, T. Christian, I. Bertschi, W. Hao, Evaluation of adsorption effects on measurements of ammonia, acetic acid, and methanol. J. Geophys. Res. 108, 4649 (2003)

    Article  Google Scholar 

  21. D. Smith, A. Pysanenko, P. Španěl, The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 23, 1419–1425 (2009)

    Article  Google Scholar 

  22. N. Akdeniz, K. Janni, L. Jacobson, B. Hetchler, Comparison of gas sampling bags to temporarily store hydrogen sulfide, ammonia, and greenhouse gases. Trans. ASABE 54, 653–661 (2011)

    Article  Google Scholar 

  23. P. Mochalski, B. Wzorek, I. Sliwka, A. Amann, Suitability of different polymer bags for storage of volatile sulphur compounds relevant to breath analysis. J. Chromatogr. B 877, 189–196 (2009)

    Article  Google Scholar 

  24. B. Timmer, W. Olthuis, A. Berg, Ammonia sensors and their applications a review. Sens. Actuators B Chem. 107, 666–677 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the funding provided by King Abdullah University of Science and Technology (KAUST). We would also like to thank Dr. Mohammed Ayran, Dr. Mahmoud Saleh, and the staff of the Dialysis Center at the International Medical Center in Jeddah, Saudi Arabia for their medical consultation and assistance in collecting breath samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Farooq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, K., Farooq, A. A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f. Appl. Phys. B 116, 371–383 (2014). https://doi.org/10.1007/s00340-013-5701-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5701-1

Keywords

Navigation