Skip to main content
Log in

The search for quantum gravity effects I

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this contribution the search for effects from possible theories of quantum gravity is reviewed. In order to distinguish quantum gravity effects from standard effects, first the standard theory and the principles it is based on has to be described. We show that standard physics (the Maxwell equations, the Dirac equation, gravity as a metric theory) is completely based on the Einstein equivalence principle, EEP (for obtaining the Einstein equations, some more requirements are needed). As a consequence, all deviations from the EEP are related to new effects originating from quantum gravity. The variety and structure of these effects is described and the expected magnitude of the effects and a corresponding strategy for the search for these effects are discussed. We stress the advantages of space for performing experiments searching for quantum gravity effects. At the end we make some remarks concerning the daily-life applications of high-precision techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sarkar, Mod. Phys. Lett. A 17, 1025 (2002)

    Article  ADS  Google Scholar 

  2. G. Amelino-Camelia, C. Lämmerzahl, A. Macias, H. Müller, The search for quantum gravity signals. In Gravitation and Cosmology (AIP Conf. Proc. 758), ed. by A. Macias, C. Lämmerzahl, D. Nunez (AIP, Melville, NY, 2005), p. 30

  3. G. Amelino-Camelia, Are we at the dawn of quantum-gravity phenomenology? In Towards Quantum Gravity (Lect. Notes Phys. 541), ed. by J. Kowalski-Glikman (Springer, Berlin, 2000), p. 1

  4. G. Amelino-Camelia, New J. Phys. 6, 188 (2004)

    Article  ADS  Google Scholar 

  5. D. Mattingly, Living Rev. Relat. 8, 5 (2005)

    ADS  Google Scholar 

  6. T. Jacobson, S. Liberati, D. Mattingly, Astrophysical bounds on Planck suppressed Lorentz violation, hep-ph/0407370

  7. C.M. Will, Theory and Experiment in Gravitational Physics, revised edn. (Cambridge University Press, Cambridge, 1993)

  8. J. Ehlers, F.A.E. Pirani, A. Schild, The geometry of free fall and light propagation. In General Relativity, Papers in Honour of J.L. Synge, ed. by L. O’Raifeartaigh (Clarendon, Oxford, 1972), p. 63

  9. J. Ehlers, Survey of general relativity theory. In Relativity, Astrophysics and Cosmology, ed. by W. Israel (Reidel, Dordrecht, 1973), p. 1

  10. J. Audretsch, C. Lämmerzahl, A new constructive axiomatic scheme for the geometry of space–time. In Semantical Aspects of Space–Time Geometry, ed. by U. Majer, H.-J. Schmidt (BI Verlag, Mannheim, 1993), p. 21

  11. C. Lämmerzahl, A. Macias, H. Müller, Phys. Rev. D 71, 025007 (2005)

    Article  ADS  Google Scholar 

  12. C. Lämmerzahl, F.W. Hehl, Phys. Rev. D 70, 105022 (2004)

    Article  ADS  Google Scholar 

  13. W.-T. Ni, Phys. Rev. Lett. 38, 301 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  14. R.F.C. Vessot, M.W. Levine, E.M. Mattison, E.L. Blomberg, T.E. Hoffmann, G.U. Nystrom, B.F. Farrel, R. Decher, P.B. Eby, C.R. Baughter, J.W. Watts, D.L. Teuber, F.D. Wills, Phys. Rev. Lett. 45, 2081 (1980)

    Article  ADS  Google Scholar 

  15. D.E. Lebach, B.E. Corey, I.I. Shapiro, M.I. Ratner, J.C. Webber, A.E.E. Rogers, J.L. Davis, T.A. Herring, Phys. Rev. Lett. 75, 1439 (1995)

    Article  ADS  Google Scholar 

  16. S. Klioner, Testing relativity with space astrometry missions. In Lasers, Clocks, and Drag-Free: Exploration of Relativistic Gravity in Space, ed. by H. Dittus, C. Lämmerzahl, S.G. Turyshev (Springer, Berlin, 2006), will appear

  17. B. Bertotti, L. Iess, P. Tortora, Nature 425, 374 (2003)

    Article  ADS  Google Scholar 

  18. I. Ciufolini, Gen. Relat. Grav. 36, 2257 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. C. Kiefer, Quantum Gravity (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  20. In J.A. Wheeler and W.H. Zurek (eds.), Quantum Theory and Measurement (Princeton University Press, Princeton, NJ, 1983), p. 479 (English translation)

  21. J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, A.S. Sakharov, Int. J. Mod. Phys. A 19, 4413 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. T. Damour, A.M. Polyakov, Nucl. Phys. B 423, 532 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. T. Damour, A.M. Polyakov, Gen. Relat. Grav. 12, 1171 (1996)

    MathSciNet  Google Scholar 

  24. T. Damour, F. Piazza, G. Veneziano, Phys. Rev. Lett. 89, 081601 (2002)

    Article  ADS  Google Scholar 

  25. T. Damour, F. Piazza, G. Veneziano, Phys. Rev. D 66, 046007 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  26. H.P. Robertson, Rev. Mod. Phys. 21, 378 (1949)

    Article  ADS  MATH  Google Scholar 

  27. R. Mansouri, R.U. Sexl, Gen. Relat. Grav. 8, 497 (1977)

    Article  ADS  Google Scholar 

  28. R. Mansouri, R.U. Sexl, Gen. Relat. Grav. 8, 515 (1977)

    Article  ADS  Google Scholar 

  29. R. Mansouri, R.U. Sexl, Gen. Relat. Grav. 8, 809 (1977)

    Article  ADS  Google Scholar 

  30. P. Tourrenc, T. Melliti, J. Bosredon, Gen. Relat. Grav. 28, 1071 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. C.M. Will, Living Rev. Relat. (2001) [www.livingreviews.org/lrr-2006-3] (cited on 10 June 2006)

  32. D. Colladay, V.A. Kostelecky, Phys. Rev. D 55, 6760 (1997)

    Article  ADS  Google Scholar 

  33. D. Colladay, V.A. Kostelecky, Phys. Rev. D 58, 116002 (1998)

    Article  ADS  Google Scholar 

  34. C.W. Misner, K. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, CA, 1973)

  35. J. Audretsch, Phys. Rev. D 24, 1470 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  36. B.S. DeWitt, R.W. Brehme, Ann. Phys. (New York) 9, 220 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  37. I.T. Drummond, S.J. Hathrell, Phys. Rev. D 22, 343 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  38. M.P. Haugan, Ann. Phys. 118, 156 (1979)

    Article  ADS  Google Scholar 

  39. F. Rohrlich, Found. Phys. 30, 621 (2000)

    Article  MathSciNet  Google Scholar 

  40. H. Dittus, C. Lämmerzahl, H. Selig, Gen. Relat. Grav. 36, 571 (2004)

    Article  ADS  MATH  Google Scholar 

  41. J.E. Kim, Phys. Rep. 150, 1 (1987)

    Article  ADS  Google Scholar 

  42. T. Damour, A. DeRujula, The scientific significance of STEOP. In STEP Symp., ed. by R. Reinhard (ESA, Noordwijk, 1993), ESA WPP-115

  43. J.E. Moody, F. Wilczek, Phys. Rev. D 30, 130 (1984)

    Article  ADS  Google Scholar 

  44. E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley, Redwood City, CA, 1990)

  45. P.V. Vorobyov, Y.I. Gitarts, Phys. Rev. Lett. 75, 2071 (1995)

    Article  Google Scholar 

  46. K. Hayashi, T. Shirafuji, Phys. Rev. 19, 3524 (1979)

    ADS  MathSciNet  Google Scholar 

  47. R. Hammond, Phys. Rev. 52, 6918 (1995)

    ADS  Google Scholar 

  48. C. Lämmerzahl, Class. Quantum Grav. 14, 13 (1998)

    Article  Google Scholar 

  49. V.A. Kostelecky, C.D. Lane, Phys. Rev. D 60, 116010 (1999)

    Article  ADS  Google Scholar 

  50. J. Audretsch, U. Bleyer, C. Lämmerzahl, Phys. Rev. A 47, 4632 (1993)

    Article  ADS  Google Scholar 

  51. A.E. Leanhardt, T.A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D.E. Pritchard, W. Ketterle, Science 301, 1513 (2003)

    Article  ADS  Google Scholar 

  52. A. Vogel, M. Schmidt, K. Sengstock, K. Bongs, W. Lewoczko, T. Schuldt, A. Peters, T. van Zoest, W. Ertmer, E. Rasel, T. Steinmetz, J. Reichel, T. Könemann, W. Brinkmann, E. Göklü, C. Lämmerzahl, H. Dittus, G. Nandi, W.P. Schleich, R. Walser, Appl. Phys. B 83 (2006), DOI: 10.1007/s00340-006-2359-y

  53. I. Antoniadis, Physics with large extra dimensions and non-Newtonian gravity at sub-mm distances. In Quantum Gravity – From Theory to Experimental Search, ed. by D. Giulini, C. Kiefer, D. Lämmerzahl (Springer, Berlin, 2003), p. 337

  54. V.A. Kostelecký, Phys. Rev. D 61, 016002 (1999)

    Article  ADS  Google Scholar 

  55. N.E. Mavromatos, Neutrinos and the phenomenology of CPT violation, hep-ph/0402005

  56. G. Amelino-Camelia, Phys. Rev. D 62, 0240151 (2000)

    Article  Google Scholar 

  57. S. Schiller, C. Lämmerzahl, H. Müller, C. Braxmaier, S. Herrmann, A. Peters, Phys. Rev. D 69, 027504 (2004)

    Article  ADS  Google Scholar 

  58. G. Amelino-Camelia, C. Lämmerzahl, Class. Quantum Grav. 21, 899 (2004)

    Article  ADS  MATH  Google Scholar 

  59. M.J. Duff, A layman’s guide to M-theory, hep-th/9805177

  60. T. Damour, G. Esposito-Farese, Class. Quantum Grav. 9, 2093 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. T. Damour, Gravity, equivalence principle and clocks. To appear in Proc. Workshop Scientific Applications of Clocks in Space, JPL, Pasadena, CA, 7–8 November 1996

  62. T. Damour, Equivalence principle and clocks. In Gravitational Waves and Experimental Gravity, ed. by J. Trân Tanh Vân, J. Dumarchez, J. Reynaud, C. Salomon, S. Thorsett, J.Y. Vinet (World Publishers, Hanoi, 2000), p. 357

  63. C. Wetterich, Phys. Lett. B 561, 10 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. C. Wetterich, Astropart. Phys. 10, 2 (2003)

    Google Scholar 

  65. H.B. Sandvik, J.D. Barrow, J. Magueijo, Phys. Rev. Lett. 88, 031302 (2002)

    Article  ADS  Google Scholar 

  66. L. Maleki, J. Prestage, SpaceTime mission: clock test of relativity at four solar radii. In Gyros, Clocks, and Interferometers: Testing Relativistic Gravity in Space, ed. by C. Lämmerzahl, C.W.F. Everitt, F.W. Hehl (Springer, Berlin, 2001), p. 369

  67. L. Maleki, SPACETIME – a midex proposal (JPL, , 2001)

  68. C. Lämmerzahl, Interferometry as a universal tool in physics. In Planck Scale Effects in Astrophysics and Cosmology (Lect. Notes Phys. 562), ed. by G. Amelino-Camelia, J. Kowalski-Glikman (Springer, Berlin, 2005), p. 161

  69. E.G. Sauter, Nonlinear Optics (Wiley, New York, 1996)

    Google Scholar 

  70. R.Y. Chiao, A.D. Speliotopoulos, J. Mod. Opt. 51, 861 (2004)

    ADS  MATH  Google Scholar 

  71. G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, S. Sarkar, Nature 393, 763 (1998)

    Article  ADS  Google Scholar 

  72. H.D. Zeh, The meaning of decoherence. In Decoherence: Theoretical, Experimental and Conceptual Problems (Lect. Notes Phys. 538), ed. by P. Blanchard, D. Giulini, E. Joos, C. Kiefer, I.-O. Stamatescu (Springer, Berlin, 2000), p. 19

  73. C. Kiefer, T.P. Singh, Phys. Rev. D 44, 1067 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  74. B. Lamine, M.-T. Jaekel, S. Reynaud, Eur. Phys. J. D 20, 165 (2002)

    Article  ADS  Google Scholar 

  75. S. Reynaud, B. Lamine, A. Lambrecht, P.M. Neto, M.-T. Jaekel, Gen. Relat. Grav. 36, 2271 (2004)

    Article  ADS  MATH  Google Scholar 

  76. C.J. Isham, Conceptual and geometrical problems in quantum gravity. In Recent Aspects of Quantum Fields, ed. by H. Mitter, H. Gaustere (Springer, Berlin, 1991), p. 123

  77. S.W. Hawking, Commun. Math. Phys. 87, 395 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. J. Ellis, S. Hagelin, D.V. Nanopoulos, M. Srednicki, Nucl. Phys. B 241, 381 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  79. C. Percival, Quantum space–time fluctuations and primary state diffusion, preprint quant-ph/9508021 (1995)

  80. I.P. Percival, W.T. Strunz, Proc. R. Soc. London A 453, 431 (1996)

    Google Scholar 

  81. J. Audretsch, C. Lämmerzahl, Appl. Phys. B 54, 351 (1992)

    Article  ADS  Google Scholar 

  82. I. Bialynicki-Birula, J. Mycielski, Ann. Phys. (New York) 100, 62 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  83. S. Weinberg, Ann. Phys. 194, 336 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  84. A. Shimony, Phys. Rev. A 20, 394 (1979)

    Article  ADS  Google Scholar 

  85. C.G. Shull, D.K. Atwood, J. Arthur, M.A. Horne, Phys. Rev. Lett. 44, 765 (1980)

    Article  ADS  Google Scholar 

  86. C. Lämmerzahl, C.J. Bordé, Testing the Dirac equation. In Gyros, Clocks, and Interferometers: Testing Relativistic Gravity in Space, ed. by C. Lämmerzahl, C.W.F. Everitt, F.W. Hehl (Springer, Berlin, 2001), p. 464

  87. A. Camacho, A. Macias, Phys. Lett. B 582, 229 (2004)

    Article  ADS  Google Scholar 

  88. C. Lämmerzahl, G. Ahlers, N. Ashby, M. Barmatz, P.L. Biermann, H. Dittus, V. Dohm, R. Duncan, K. Gibble, J. Lipa, N.A. Lockerbie, N. Mulders, C. Salomon, Gen. Relat. Grav. 36, 615 (2004)

    Article  ADS  MATH  Google Scholar 

  89. C. Salomon, N. Dimarcq, M. Abgrall, A. Clairon, P. Laurent, P. Lemonde, G. Santarelli, P. Uhrich, L.G. Bernier, G. Busca, A. Jornod, P. Thomann, E. Samain, P. Wolf, F. Gonzalez, P. Guillemot, S. Leon, F. Nouel, C. Sirmain, S. Feltham, C.R. Acad. Sci. Paris 4, 1313 (2004)

    Google Scholar 

  90. C.W.F. Everitt, S. Buchman, D.B. DeBra, G.M. Keiser, J.M. Lockhart, B. Muhlfelder, B.W. Parkinson, J.P. Turneaure and other members of the Gravity Probe B team, Gravity Probe B: countdown to launch. In Gyros, Clocks, and Interferometers: Testing Relativistic Gravity in Space, ed. by C. Lämmerzahl, C.W.F. Everitt, F.W. Hehl (Springer, Berlin, 2001), p. 52

  91. N. Lockerbie, J.C. Mester, R. Torii, S. Vitale, P.W. Worden, STEP: a status report. In Gyros, Clocks, and Interferometers: Testing Relativistic Gravity in Space, ed. by C. Lämmerzahl, C.W.F. Everitt, F.W. Hehl (Springer, Berlin, 2001), p. 213

  92. P. Touboul, C.R. Acad. Sci. IV. Phys. 2, 1271 (2001)

    Google Scholar 

  93. C. Jentsch, T. Müller, E.M. Rasel, W. Ertmer, Gen. Relat. Grav. 36, 2197 (2004)

    Article  ADS  MATH  Google Scholar 

  94. H. Dittus, Pioneer science team, a mission to explore the Pioneer anomaly. In Trends in Space Science and Cosmic Vision 2030 (ESA, Noordwijk, 2005)

  95. S. Turyshev, LATOR science team, laser astrometric test of relativity. In Trends in Space Science and Cosmic Vision 2030 (ESA, Noordwijk, 2005)

  96. W.T. Ni, J. Zhu, X.P. Wu, G.B. Chu, B. Yang, J. Gao, M. Guan, C.J. Tang, C.J. Chou, Y. Chou, C.H. Chang, T.Y. Huang, Q.Y. Qu, Z.H. Yi, G.Y. Li, J.H. Tao, A.M. Wu, J. Luo, H.C. Yeh, Z.B. Zhou, Y.H. Xiong, S.L. Bi, C.M. Xu, X.J. Wu, M.X. Tang, Y. Bao, F.Y. Li, C. Huang, F.M. Yang, S.H. Ye, S.L. Zhang, Y.Z. Zhang, Y.X. Nie, G. Chen, J. Christensen-Dalsgaard, H. Dittus, Y. Fujii, C. Lämmerzahl, J.F. Mangin, A. Peters, A. Rüdiger, E. Samain, S. Schiller, Int. J. Mod. Phys. D 11, 1035 (2002)

    Article  ADS  Google Scholar 

  97. S. Buchman, J.P. Turneaure, J.A. Lipa, M. Dong, K.M. Cumbernack, S. Wang, A superconducting microwave oscillator clock for use on the space station. In Proc. IEEE Int. Freq. Symp., 1998, p. 534

  98. S. Buchman, M. Dong, S. Wang, J.A. Lipa, J.P. Turneaure, Adv. Space Res. 25, 1251 (2000)

    Article  ADS  Google Scholar 

  99. C. Lämmerzahl, H.-J. Dittus, Ann. Phys. 11, 95 (2002)

    Article  MATH  Google Scholar 

  100. J.C. Hafele, R.E. Keating, Science 177, 166 (1972)

    Article  ADS  Google Scholar 

  101. J.C. Hafele, R.E. Keating, Science 177, 168 (1972)

    Article  ADS  Google Scholar 

  102. N. Ashby, Phys. Today 55, 42 (2002)

    Article  Google Scholar 

  103. N. Ashby, Relativity in the global positioning system, Living Rev. Relat. 6:1 [online article, http://www.livingreviews.org/lrr-2003-1] (2003)

    Google Scholar 

  104. T. Quinn, Metrologia 31, 515 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lämmerzahl.

Additional information

PACS

04.80.Cc; 03.30.+p; 06.20.-f; 04.60.-m

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lämmerzahl, C. The search for quantum gravity effects I. Appl. Phys. B 84, 551–562 (2006). https://doi.org/10.1007/s00340-006-2374-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2374-z

Keywords

Navigation