Skip to main content
Log in

Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A tunable diode laser (TDL) temperature sensor is designed, constructed, tested, and demonstrated in the exhaust of an industrial gas turbine. Temperature is determined from the ratio of the measured absorbance of two water vapor overtone transitions in the near infrared where telecommunication diode lasers are available. Design rules are developed to select the optimal pair of transitions for direct absorption measurements using spectral simulations by systematically examining the absorption strength, spectral isolation, and temperature sensitivity to maximize temperature accuracy in the core flow and minimize sensitivity to water vapor in the cold boundary layer. The contribution to temperature uncertainty from the spectroscopic database is evaluated and precise line-strength data are measured for the selected transitions. Gas-temperature measurements in a heated cell are used to verify the sensor accuracy (over the temperature range of 350 to 1000 K, ΔT∼2 K for the optimal line pair and ΔT∼5 K for an alternative line pair). Field measurements of exhaust-gas temperature in an industrial gas turbine demonstrate the practical utility of TDL sensing in harsh industrial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen MG (1998) Meas. Sci. Technol. 9:545

    Article  ADS  Google Scholar 

  2. Mihalcea RM, Baer DS, Hanson RK (1998) Proc. Combust. Inst. 27:95

    Google Scholar 

  3. Arroyo MP, Langlois S, Hanson RK (1994) Appl. Opt. 33:3296

    ADS  Google Scholar 

  4. Baer DS, Newfield ME, Gopaul N, Hanson RK (1994) Opt. Lett. 19:1900

    ADS  Google Scholar 

  5. Nagali V, Hanson RK (1997) Appl. Opt. 36:9518

    Article  ADS  Google Scholar 

  6. M.G. Allen, E.R. Furlong, R.K. Hanson, in Applied Combustion Diagnostics, ed. by K. Kohse-Hoeinghaus, J.B. Jeffries (Taylor and Francis, New York 2002), p. 479

  7. Philippe LC, Hanson RK (1993) Appl. Opt. 32:6090

    ADS  Google Scholar 

  8. Furlong ER, Baer DS, Hanson RK (1996) Proc. Combust. Inst. 26:2851

    Google Scholar 

  9. Liu JTC, Rieker GB, Jeffries JB, Hanson RK (2005) Appl. Opt. 44:1

    MATH  Google Scholar 

  10. K.M. Hinckley, J.B. Jeffries, R.K. Hanson, in 42nd AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, January 2004, paper AIAA-2004-0713

  11. Ebert V, Fernholz T, Giesemann C, Teichert H, Wolfrum J, Jaritz H (2000) Proc. Combust. Inst. 28:423

    Article  Google Scholar 

  12. Whiting EE (1976) J. Quantum Spectrosc. Radiat. Transfer 16:611

    Article  Google Scholar 

  13. Gamache RR, Kennedy S, Hawkins R, Rothman LS (2000) J. Mol. Struct. 517–518:407

    Article  Google Scholar 

  14. Ouyang X, Varghese PL (1989) Appl. Opt. 28:3979

    ADS  Google Scholar 

  15. Sanders ST, Wang J, Jeffries JB, Hanson RK (2001) Appl. Opt. 40:4404

    Article  ADS  Google Scholar 

  16. Zhou X, Liu X, Jeffries JB, Hanson RK (2003) Meas. Sci. Technol. 14:1459

    Article  ADS  Google Scholar 

  17. Zhou X, Jeffries JB, Hanson RK (2005) Appl. Phys. B 81:711

    Article  ADS  Google Scholar 

  18. http://cfa-www.harvard.edu/hitran/

  19. Gharavi M, Buckley SG (2004) Appl. Spectrosc. 58:468

    Article  ADS  Google Scholar 

  20. X. Liu, X. Zhou, J.B. Jeffries, R.K. Hanson, in 43rd AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, January 2005, paper AIAA-2005-0829

  21. Arroyo MP, Hanson RK (1993) Appl. Opt. 32:6104

    ADS  Google Scholar 

  22. Langlois S, Birbeck TP, Hanson RK (1994) J. Mol. Spectrosc. 163:27

    Article  ADS  Google Scholar 

  23. Langlois S, Birbeck TP, Hanson RK (1994) J. Mol. Spectrosc. 167:272

    Article  ADS  Google Scholar 

  24. Nagali V, Chou SI, Baer DS, Hanson RK (1997) J. Quantum Spectrosc. Radiat. Transfer 57:795

    Article  ADS  Google Scholar 

  25. Toth RA (1994) Appl. Opt. 33:4851

    Article  ADS  Google Scholar 

  26. K.M. Hinckley, M.A. Woodmansee, W. Chen, J. Lu, J. Gu, X. Liu, J.B. Jeffries, in 4th Joint Meeting of the US Sections of the Combustion Institute, Philadelphia, PA, March 2005, p. 808

  27. Humilcek J (1982) J. Quantum Spectrosc. Radiat. Transfer 27:437

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Liu.

Additional information

PACS

42.62.Fi; 42.55.Px; 42.62.Cf; 39.30.+w

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Jeffries, J., Hanson, R. et al. Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature. Appl. Phys. B 82, 469–478 (2006). https://doi.org/10.1007/s00340-005-2078-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2078-9

Keywords

Navigation