Skip to main content
Log in

Enhanced stability and low operational voltage of resistive switching behavior in defect engineered LaMnO3 film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we have reported the colossal cyclic stability of oxygen-vacancy-rich LaMnO3 thin film resistive switching device synthesized by tuning the oxygen partial pressure within the pulsed laser deposition (PLD) chamber with suitably chosen non-inert electrode combination (Ag and ITO). Increasing profile of cyclic endurance even after 11,000 cycles was reported, which can facilitate the fabrication of sustainable device for neuromorphic computation. The base pressure synthesis and electrode materials also help to achieve low operational voltage window of  ± 1 V, with SET and RESET voltage as − 0.5 V and 0.8 V, respectively, which is the lowest compared to reports on previous PLD grown LaMnO3 thin films. The resistive switching is found to be of valance change memory (VCM) type, whereas the conduction mechanism is governed by space charge limited conduction (SCLC). Also, decrease in switching window for high oxygen pressure deposited film confirms crucial role of oxygen vacancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. E. Moore, (McGraw-Hill, New York, 1965).

  2. J.P. Colinge, Multigate transistors: pushing Moore’s law to the limit. Int. Confer. Simul. Semicond. Process. Dev. (SISPAD) 2014, 313–316 (2014). https://doi.org/10.1109/SISPAD.2014.6931626

    Article  Google Scholar 

  3. X. Zhao, A. Vardi, J.A. del Alamo, IEEE Electron Device Lett. 39(4), 476–479 (2018)

    Article  ADS  Google Scholar 

  4. E. Miller, X. Dang, E. Yu, J. Appl. Phys. 88(10), 5951–5958 (2000)

    Article  ADS  Google Scholar 

  5. Y. Li, Z. Wang, R. Midya, Q. Xia, J.J. Yang, J. Phys. D Appl. Phys. 51(50), 503002 (2018)

    Article  ADS  Google Scholar 

  6. D. Ielmini, R. Waser, Resistive switching: from fundamentals of nanoionic redox processes to memristive device applications (Wiley, New York, 2015)

    Google Scholar 

  7. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453(7191), 80–83 (2008)

    Article  ADS  Google Scholar 

  8. J. Yao, Z. Sun, L. Zhong, D. Natelson, J.M. Tour, Nano Lett. 10(10), 4105–4110 (2010)

    Article  ADS  Google Scholar 

  9. J.-W. Han, M. Meyyappan, AIP Adv. 1(3), 032162 (2011)

    Article  ADS  Google Scholar 

  10. S.Z. Rahaman, Y.-D. Lin, H.-Y. Lee, Y.-S. Chen, P.-S. Chen, W.-S. Chen, C.-H. Hsu, K.-H. Tsai, M.-J. Tsai, P.-H. Wang, Langmuir 33(19), 4654–4665 (2017)

    Article  Google Scholar 

  11. P. Noé, C. Vallée, F. Hippert, F. Fillot, J.-Y. Raty, Semicond. Sci. Technol. 33(1), 013002 (2017)

    Article  ADS  Google Scholar 

  12. J. Lappalainen, J. Mizsei, M. Huotari, J. Appl. Phys. 125(4), 044501 (2019)

    Article  ADS  Google Scholar 

  13. G. Li, D. Xie, H. Zhong, Z. Zhang, X. Fu, Q. Zhou, Q. Li, H. Ni, J. Wang, E.-J. Guo, Nat. Commun. 13(1), 1–9 (2022)

    ADS  Google Scholar 

  14. S.R. Bauers, M.B. Tellekamp, D.M. Roberts, B. Hammett, S. Lany, A.J. Ferguson, A. Zakutayev, S.U. Nanayakkara, Nanotechnology 32(37), 372001 (2021)

    Article  Google Scholar 

  15. K. Fleck, U. Böttger, R. Waser, S. Menzel, IEEE Electron Device Lett. 35(9), 924–926 (2014)

    Article  ADS  Google Scholar 

  16. F. Zeng, Y. Guo, W. Hu, Y. Tan, X. Zhang, J. Feng, X. Tang, ACS Appl. Mater. Interfaces. 12(20), 23094–23101 (2020)

    Article  Google Scholar 

  17. Y. van De Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo, Nat. Electr. 1(7), 386–397 (2018)

    Article  Google Scholar 

  18. K. De, R. Ray, R.N. Panda, S. Giri, H. Nakamura, T. Kohara, J. Magn. Magn. Mater. 288, 339–346 (2005)

    Article  ADS  Google Scholar 

  19. E. Wollan, W. Koehler, Phys. Rev. 100(2), 545 (1955)

    Article  ADS  Google Scholar 

  20. C. Ritter, M. Ibarra, J. De Teresa, P. Algarabel, C. Marquina, J. Blasco, J. Garcia, S. Oseroff, S. Cheong, Phys. Rev. B 56(14), 8902 (1997)

    Article  ADS  Google Scholar 

  21. K. Gadani, M. Keshvani, D. Dhruv, H. Boricha, K. Rathod, P. Prajapati, A. Joshi, D. Pandya, N. Shah, P. Solanki, J. Alloy. Compd. 719, 47–57 (2017)

    Article  Google Scholar 

  22. J.D. Fuhr, M. Avignon, B. Alascio, Phys. Rev. Lett. 100(21), 216402 (2008)

    Article  ADS  Google Scholar 

  23. A. Yamasaki, M. Feldbacher, Y.-F. Yang, O. Andersen, K. Held, Phys. Rev. Lett. 96(16), 166401 (2006)

    Article  ADS  Google Scholar 

  24. G. Rao, J. Sun, K. Bärner, N. Hamad, J. Phys.: Condens. Matter 11(6), 1523 (1999)

    ADS  Google Scholar 

  25. D. Liu, H. Cheng, G. Wang, X. Zhu, N. Wang, J. Appl. Phys. 114(15), 154906 (2013)

    Article  ADS  Google Scholar 

  26. D. Liu, N. Wang, G. Wang, Z. Shao, X. Zhu, C. Zhang, H. Cheng, Appl. Phys. Lett. 102(13), 134105 (2013)

    Article  ADS  Google Scholar 

  27. K. Kumari, S. Majumder, A.D. Thakur, S. Ray, Mater. Lett. 303, 130451 (2021)

    Article  Google Scholar 

  28. Z.T. Xu, K.J. Jin, L. Gu, Y.L. Jin, C. Ge, C. Wang, H.Z. Guo, H.B. Lu, R.Q. Zhao, G.Z. Yang, Small 8(8), 1279–1284 (2012)

    Article  Google Scholar 

  29. R. Rodriguez-Lamas, D. Pla, O. Chaix-Pluchery, B. Meunier, F. Wilhelm, A. Rogalev, L. Rapenne, X. Mescot, Q. Rafhay, H. Roussel, Beilstein J. Nanotechnol. 10(1), 389–398 (2019)

    Article  Google Scholar 

  30. Y. Yin, C. Kang, C. Jia, W. Zhang, Curr. Appl. Phys. 31, 22–28 (2021)

    Article  ADS  Google Scholar 

  31. C. Wang, K.-J. Jin, Z.-T. Xu, L. Wang, C. Ge, H.-B. Lu, H.-Z. Guo, M. He, G.-Z. Yang, Appl. Phys. Lett. 98(19), 192901 (2011)

    Article  ADS  Google Scholar 

  32. Y.-L. Jin, K.-J. Jin, C. Ge, H.-B. Lu, G.-Z. Yang, Mod. Phys. Lett. B 27(29), 1330021 (2013)

    Article  ADS  Google Scholar 

  33. X. Jin, B. Ma, K. Zhao, Z. Zhang, J. Deng, J. Luo, W. Yuan, Ceram. Int. 46(4), 4602–4609 (2020)

    Article  Google Scholar 

  34. B. Meunier, E. Martinez, R. Rodriguez-Lamas, D. Pla, M. Burriel, C. Jimenez, Y. Yamashita, O. Renault, ACS Appl. Electron. Mater. 3(12), 5555–5562 (2021)

    Article  Google Scholar 

  35. K. Kumari, S. Ray, A.D. Thakur, Appl. Phys. A 128(5), 1–11 (2022)

    Article  Google Scholar 

  36. Y. Xia, W. He, L. Chen, X. Meng, Z. Liu, Appl. Phys. Lett. 90(2), 022907 (2007)

    Article  ADS  Google Scholar 

  37. B. Meunier, D. Pla, R. Rodriguez-Lamas, M. Boudard, O. Chaix-Pluchery, E. Martinez, N. Chevalier, C. Jiménez, M. Burriel, O. Renault, ACS Appl. Electron. Mater. 1(5), 675–683 (2019)

    Article  Google Scholar 

  38. B. Meunier, E. Martinez, R. Rodriguez-Lamas, D. Pla, M. Burriel, M. Boudard, C. Jimenez, J.-P. Rueff, O. Renault, J. Appl. Phys. 126(22), 225302 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Ministry of Human Resources and Development (MHRD), Government of India for support. Authors thank DST, Govt. of India, for the Research grant under sanction SR/FST/PS1/2018/34.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay D. Thakur.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization of entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1399 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, I., Mukherjee, A.K. & Thakur, A.D. Enhanced stability and low operational voltage of resistive switching behavior in defect engineered LaMnO3 film. Appl. Phys. A 129, 11 (2023). https://doi.org/10.1007/s00339-022-06265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06265-7

Keywords

Navigation