Skip to main content
Log in

Structural, magnetic and magnetocaloric study of Ni0.5Zn0.5Fe2O4 spinel

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The objective of this work was to study the influence of annealing temperature on the structural changes and magnetic properties of the Ni0.5Zn0.5Fe2O4 spinel-type nanoparticles. The nanomaterial was prepared by the chemical co-precipitation method and studied by thermal analysis (TG–DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), magnetic measurements and 57Fe Mössbauer spectrometry. XRD has revealed that the as-prepared sample shows poor crystallization with less defined diffraction lines. As the annealing temperature increases, the diffraction peaks become intense and well defined, reflecting perfect crystallization of the sample. The estimated crystallite size varies from 25 to 83 nm. TEM observations give information on the morphology and confirm the XRD results. To quantify the proportions of the iron atoms in the tetrahedral and octahedral sites, in-field Mössbauer spectrometry measurements were carried out at low temperature. Saturation magnetization (Ms) and the average hyperfine magnetic field \( \left( {\left\langle {B_{\text{hf}} } \right\rangle } \right) \) increase gradually with annealing temperature. For the sample annealed at 1000 °C, the magnetic entropy change \( \left| {\Delta S_{\text{M}}^{\hbox{max} } } \right| \) and relative cooling power, measured under field change of 2T, are 0.67 J kg−1 K−1 and 112.5 J kg−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E. Veena Gopalan, I.A. Al-Omari, K.A. Malini, P.A. Joy, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, Impact of zinc substitution on the structural and magnetic properties of chemically derived nanosized manganese zinc mixed ferrites. J. Magn. Magn. Mater. 321, 1092–1099 (2009)

    Article  ADS  Google Scholar 

  2. S.S. Jadhav, S.E. Shirsath, S.M. Patange, K.M. Jadhav, Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrite. J. Appl. Phys. 108, 93920 (2010)

    Article  Google Scholar 

  3. M.S. Anwar, F. Ahmed, B.H. Koo, Enhanced relative cooling power of Ni1−xZnxFe2O4 (0.0 ≤ x ≤ 0.7) ferrites. Acta Mater. 71, 100–107 (2014)

    Article  Google Scholar 

  4. M.E. McHenry, D.E. Laughlin, Nano-scale materials development for future magnetic applications. Acta Mater. 48, 223–238 (2000)

    Article  Google Scholar 

  5. G.F. Goya, H.R. Rechenberg, J.Z. Jiang, Structural and magnetic properties of ball milled copper ferrite. J. Appl. Phys. 84, 1101 (1998)

    Article  ADS  Google Scholar 

  6. Z.X. Yue, J. Zhou, X.H. Wang, Z.L. Gui, L.T. Li, Low-temperature sintered Mg–Zn–Cu ferrite prepared by auto-combustion of nitrate–citrate gel. J. Mater. Sci. Lett. 20, 1327–1329 (2001)

    Article  Google Scholar 

  7. N. Ponpandian, P. Balaya, A. Narayanasamy, Electrical conductivity and dielectric behaviour of nanocrystalline NiFe2O4 spinel. J. Phys.: Condens. Matter. 14, 3221–3237 (2002)

    ADS  Google Scholar 

  8. D.G. Chen, X.G. Tang, J.B. Wu, W. Zhang, Q.X. Liu, Y.P. Jiang, Effect of grain size on the magnetic properties of superparamagnetic Ni0.5Zn0.5Fe2O4 nanoparticles by co-precipitation process. J. Magn. Magn. Mater. 323, 1717–1721 (2011)

    Article  ADS  Google Scholar 

  9. R.C. Pedroza, S.W. da Silva, M.A.G. Soler, P.P.C. Sartoatto, D.R. Rezende, P.C. Morais, Raman study of nanoparticle-template interaction in a CoFe2O4/SiO2-based nanocomposite prepared by sol–gel method. J. Magn. Magn. Mater. 289, 139–141 (2005)

    Article  ADS  Google Scholar 

  10. H. Yang, X.C. Zhang, W.Q. Ao, G.Z. Qiu, Formation of NiFe2O4 nanoparticles by mechanochemical reaction. Mater. Res. Bull. 39, 833–837 (2004)

    Article  Google Scholar 

  11. M. Ajmal, A. Maqsood, Influence of zinc substitution on structural and electrical properties of Ni1−xZnxFe2O4 ferrites. Mater. Sci. Eng. B 139, 164–170 (2007)

    Article  Google Scholar 

  12. J.M. Daniels, A. Rosencwaig, Mössbauer study of the Ni–Zn ferrite system. Rev. Can. Phys. 48(4), 381–396 (1970)

    Article  ADS  Google Scholar 

  13. H. Yang, X.C. Zhang, C.H. Huang, W.G. Yang, G.Z. Qiu, Synthesis of ZnFe2O4 nanocrystallites by mechanochemical reaction. J. Phys. Chem. Solids 65, 1329–1332 (2004)

    Article  ADS  Google Scholar 

  14. J.H. Liu, L. Wang, F.S. Li, Magnetic properties and Mössbauer studies of nanosized NiFe2O4 particles. J. Mater. Sci. 40, 2573–2575 (2005)

    Article  ADS  Google Scholar 

  15. I.S. Lyubutin, C.R. Lin, S.S. Starchikov, A.O. Baskakov, N.E. Gervits, K.O. Funtov, Y.T. Tseng, W.J. Lee, K.Y. Shih, J.S. Lee, Structural, magnetic, and electronic properties of mixed spinel NiFe2−xCrxO4 nanoparticles synthesized by chemical combustion. Inorg. Chem. 56, 12469–12475 (2017)

    Article  Google Scholar 

  16. G. Salazar-Alvarez, R.T. Olsson Jordi Sort, W.A.A. Macedo, J.D. Ardisson, M. Dolores Baro, U.W. Gedde, J. Nogues, Enhanced coercivity in co-rich near-stoichiometric CoxFe3−xO4+δ nanoparticles prepared in large batches. Chem. Mater. 19, 4957–4963 (2007)

    Article  Google Scholar 

  17. S.M. Benford, G.V. Brown, TS diagram for gadolinium near the Curie temperature. J. Appl. Phys. 52, 2110 (1981)

    Article  ADS  Google Scholar 

  18. E. Oumezzine, S. Hcini, M. Baazaoui, E.K. Hlil, M. Oumezzine, Structural, magnetic and magnetocaloric properties of Zn0.6−xNixCu0.4Fe2O4 ferrite nanoparticles prepared by Pechini sol–gel method. Powder Technol. 278, 189–195 (2015)

    Article  Google Scholar 

  19. K. El Maalam, L. Fkhar, M. Hamedoun, A. Mahmoud, F. Boschini, E.K. Hlil, A. Benyoussef, O. Mounkachi, Magnetocaloric properties of zinc–nickel ferrites around room temperature. J. Supercond. Nov. Magn. 30(7), 1943–1947 (2017)

    Article  Google Scholar 

  20. R.A. Brand, Normos Mössbauer fitting program. Nucl. Instr. Methods B 28, 398–416 (1987)

    Article  ADS  Google Scholar 

  21. S. Ayyappan, G. Gnanaprakash, G. Paneerselvam, M.P. Antony, Effect of surfactant monolayer on reduction of Fe3O4 nanoparticles under vacuum. J. Phys. Chem. 112C, 18376–18383 (2008)

    Google Scholar 

  22. S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, K.Y. Rajpure, J.H. Kim, A.V. Moholkar, C.H. Bhosale, Structural, dielectric and magnetic properties of Ni substituted zinc ferrite. J. Magn. Magn. Mater. 363, 114–120 (2014)

    Article  ADS  Google Scholar 

  23. A.S. Albuquerque, J.D. Ardison, W.A.A. Macedo, M.C.M. Alves, Nanosized powders of NiZn ferrite: synthesis, structure, and magnetism. J. Appl. Phys. 87, 4352 (2000)

    Article  ADS  Google Scholar 

  24. M.E. Lopez-Herrera, J.M. Greneche, F. Varret, Analysis of the Mössbauer quadrupole spectra of some amorphous fluorides. Phys. Rev. B 28, 4944–4948 (1983)

    Article  ADS  Google Scholar 

  25. J.J. Thomas, A.B. Shinde, P.S.R. Krishna, N. Kalarikkal, Cation distribution and micro level magnetic alignments in the nanosized nickel zinc ferrite. J. Alloys Compd. 546, 77–83 (2013)

    Article  Google Scholar 

  26. J.A. Ramos Guivar, E.A. Sanches, F. Bruns, E. Sadrollahi, M.A. Morales, E.O. Lópeze, F.J. Litterst, Vacancy ordered γ-Fe2O3 nanoparticles functionalized with nanohydroxyapatite: XRD, FTIR, TEM, XPS and Mössbauer studies. Appl. Surf. Sci. 389, 721–734 (2016)

    Article  ADS  Google Scholar 

  27. V. Sreeja, S. Vijayanand, S. Deka, P.A. Joy, Magnetic and Mössbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method. Hyperfine Interact. 183(99), 271–279 (2008)

    Google Scholar 

  28. J.M. Greneche, Mössbauer Spectroscopy, ed. by Y. Yoshida, G. Langouche (Springer, Berlin, 2013), pp. 187–241

  29. V. Šepelák, D. Baabe, D. Mienert, F.J. Litterst, K.D. Becker, Enhanced magnetisation in nanocrystalline high-energy milled MgFe2O4. Scr. Mater. 48, 961–966 (2003)

    Article  Google Scholar 

  30. I. Bergmann, V. Šepelák, K.D. Becker, Preparation of nanoscale MgFe2O4 via non-conventional mechanochemical route. Sol. State Ion. 177, 1865–1868 (2006)

    Article  Google Scholar 

  31. J. Jadhav, S. Biswas, A.K. Yadav, S.N. Jha, D. Bhattacharyya, Structural and magnetic properties of nanocrystalline Ni–Zn ferrites: in the context of cationic distribution. J. Alloys Compd. 696, 28–41 (2017)

    Article  Google Scholar 

  32. M.A. Gabal, Y.M. Al Angari, Effect of diamagnetic substitution on the structural, magnetic and electrical properties of NiFe2O4. Mater. Chem. Phys. 115, 578–584 (2009)

    Article  Google Scholar 

  33. MdS Hossain, S.M. Hoque, S.I. Liba, S. Choudhury, Effect of synthesis methods and a comparative study of structural and magnetic properties of zinc ferrite. AIP Adv. 7, 105321 (2017)

    Article  ADS  Google Scholar 

  34. M.K. Anupama, N. Srinatha, S. Matteppanavar, B. Angadi, B. Sahoo, B. Rudraswamy, Effect of Zn substitution on the structural and magnetic properties of nanocrystalline NiFe2O4 ferrites. Ceram. Int. 44, 4946–4954 (2018)

    Article  Google Scholar 

  35. J. Curiale, M. Granada, H.E. Troiani, R.D. Sanchez, A.G. Leyva, P. Levy, K. Samwer, Magnetic dead layer in ferromagnetic manganite nanoparticles. Appl. Phys. Lett. 95, 043106 (2009)

    Article  ADS  Google Scholar 

  36. J. Chappert, R.B. Frankel, Mössbauer study of ferrimagnetic ordering in nickel ferrite and chromium-substituted nickel ferrite. Phys. Rev. Lett. 19, 570–572 (1967)

    Article  ADS  Google Scholar 

  37. T.M. Clark, B.J. Evans, Enhanced magnetization and cation distributions in nanocrystalline ZnFe2O4: a conversion electron Mossbauer spectroscopic investigation. IEEE Trans. Mag. 33, 3745 (1997)

    Article  ADS  Google Scholar 

  38. A.E. Berkowitz, R.H. Kodama, S.A. Makhlol, F.T. Parker, F.E. Spada, E.J. McNiff Jr., S. Foner, Anomalous properties of magnetic nanoparticles. J. Magn. Magn. Mater. 196–197, 591–594 (1999)

    Article  ADS  Google Scholar 

  39. J.P. Chen, C.M. Sorense, K.J. Klabunde, G.C. Hadjipanayis, E. Devlin, A. Kostikas, Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys. Rev. B: Condens. Matter 54, 9288–9296 (1996)

    Article  ADS  Google Scholar 

  40. S. Verma, P.A. Joy, Magnetic properties of superparamagnetic lithium ferrite nanoparticles. J. Appl. Phys. 98, 124312 (2005)

    Article  ADS  Google Scholar 

  41. B.K. Banerjee, On a generalized approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964)

    Article  ADS  Google Scholar 

  42. J. Mira, J. Rivas, F. Rivadulla, C. Vázquez-Vázquez, M.A. López-Quintela, Change from first- to second-order magnetic phase transition in La2/3(Ca, Sr)1/3MnO3 perovskites. Phys. Rev. B 60, 2998 (1999)

    Article  ADS  Google Scholar 

  43. H. Saito, T. Yokoyama, K. Fukamichi, Itinerant-electron metamagnetism and the onset of ferromagnetism in Laves phase Lu(Co1−xGax)2 compounds. J. Phys.: Condens. Matter 9, 9333 (1997)

    ADS  Google Scholar 

  44. V.K. Pecharsky, K.A. Gschneidner Jr., Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200, 44–56 (1999)

    Article  ADS  Google Scholar 

  45. A. Verma, T.C. Goel, R.G. Mendiratta, P. Kishan, Magnetic properties of nickel–zinc ferrites prepared by the citrate precursor method. J. Magn. Magn. Mater. 208, 13–19 (2000)

    Article  ADS  Google Scholar 

  46. R. Felhi, H. Omrani, M. Koubaa, W. Cheikhrouhou Koubaa, A. Cheikhrouhou, Enhancement of magnetocaloric effect around room temperature in Zn0.7Ni0.3−xCuxFe2O4 (0 ≤ x ≤ 0.2) spinel ferrites. J. Alloys Compd. 758, 237 (2018)

    Article  Google Scholar 

  47. R. Thljaoui, W. Boujelben, M. Pekala, K. Pekala, J.F. Fagnard, P. Vanderbemden, M. Donten, A. Cheikhrouhou, Magnetocaloric effect of monovalent K doped manganites Pr0.6Sr0.4−xKxMnO3 (x = 0 to 0.2). J. Magn. Magn. Mater. 352, 6–12 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sajieddine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabi, B., Essoumhi, A., Sajieddine, M. et al. Structural, magnetic and magnetocaloric study of Ni0.5Zn0.5Fe2O4 spinel. Appl. Phys. A 126, 174 (2020). https://doi.org/10.1007/s00339-020-3344-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3344-8

Keywords

Navigation