Skip to main content
Log in

Electrochemical detection of ammonia solution using tin oxide nanoparticles synthesized via sol–gel route

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, electrochemical detection of ammonia solution (NH4OH) using sol–gel-synthesized tin oxide (SnO2) nanoparticles is investigated. Structural characteristics were studied using X-ray diffraction, scanning electron microscope and energy-dispersive X-ray spectroscopy that confirmed the formation of tin oxide nanoparticles. Optical characterizations were also studied via UV–Vis–IR spectroscopy and photoluminescence spectroscopy. After successful confirmation of sol–gel synthesis, these tin oxide nanoparticles were deposited on patterned copper substrate via thermal evaporator. Analysis for sensing ammonia solution was carried out using a three electrode system via electrochemical workstation. Electrochemical technique incorporates the results of cyclic voltammetry. The results confirmed that the SnO2-deposited copper (Cu) platform successfully detect the presence of ammonia solution in double-distilled water. These results were further analyzed and compared with each indium tin oxide (ITO)-coated glass and pure copper substrate. Moreover, the tin oxide-deposited copper platform showed better performance than ITO substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I.S. Helgadottir, P.P. Arquilliere, P. Brea, C.C. Santini, P.H. Haumesser, K. Richter, A.V. Mudring, M. Aouine, Microelectron. Eng. 107, 229–232 (2013)

    Article  Google Scholar 

  2. S. Arya, P.K. Lehana, S.B. Rana, J. Electron. Mater. 46, 4604–4611 (2017)

    Article  ADS  Google Scholar 

  3. C. Branci, N.B. Enjelloun, J. Sarradin, M.R. Ribes, Solid State Ion. 135, 169–174 (2000)

    Article  Google Scholar 

  4. W.Q. Wu, D. Chen, Y.B. Cheng, R.A. Caruso, RRL Solar 1, 1700117 (2017)

    Article  Google Scholar 

  5. G. Gaggiotti, A. Galdikas, S. Kaciulis, G. Mattogno, A. Setkus, J. Appl. Phys. 76, 4467 (1994)

    Article  ADS  Google Scholar 

  6. R. Valaski, E. Silveira, L. Micaroni, I.A. Hummelgen, J. Solid State Electrochem. 5, 261–264 (2001)

    Article  Google Scholar 

  7. J.F. McAleer, P.T. Moseley, J.O.W. Norris, D.E. Williams, P. Taylor, B.C. Tofield, Mater. Chem. Phys. 17, 577–583 (1987)

    Article  Google Scholar 

  8. J.P. Ge, J. Sang, H.X. Zhang, X. Wang, Q. Peng, Y.D. Li, Sens. Actuators B Chem. 113, 937–943 (2006)

    Article  Google Scholar 

  9. R. Adnan, N.A. Razana, I.A. Rahman, M.A. Farrukh, J. Chin. Chem. Soc. 57, 222–2292 (2010)

    Article  Google Scholar 

  10. J. Zhu, B. Tay, Y. Ma, J. Mater. Lett. 60, 1003–1010 (2006)

    Article  Google Scholar 

  11. S. Gnanam, V. Rajendran, J. Sol Gel Sci. Technol. 53, 555–559 (2010)

    Article  Google Scholar 

  12. S. Phadungdhitidhada, P. Ruankham, A. Gardchareon, D. Wongratanaphisan, S. Choopun, Adv. Nat. Sci. Nanosci. Nanotechnol 8, 035004 (2017)

    Article  ADS  Google Scholar 

  13. M.A.M. Akhir, K. Mohamed, H.L. Lee, S.A. Rezan, Proc. Chem. 19, 993–998 (2016)

    Article  Google Scholar 

  14. S. Tazikeh, A. Akbari, A. Talebi, E. Talebi, Mater. Sci. Pol. 32, 98–101 (2014)

    Article  ADS  Google Scholar 

  15. L.C. Nehru, C. Sanjeeviraja, J. Adv. Ceram. 3, 171–176 (2014)

    Article  Google Scholar 

  16. S. Kim, H. Lee, C.M. Park, Y. Jung, J. Nanosci. Nanotechnol. 12, 1616–1619 (2014)

    Article  Google Scholar 

  17. S.A. Papargyri, D.N. Tsipas, D.A. Papargyris, A.I. Botis, A.D. Papargyris, Solid State Phenom. 106, 57–62 (2005)

    Article  Google Scholar 

  18. H. Deng, F.J. Lamelas, J.M. Hossenlopp, Chem. Mater. 15, 2429–2436 (2003)

    Article  Google Scholar 

  19. A.V. Borhade, D.R. Tope, S.G. Gite, Arab. J. Chem. 10, S559–S567 (2017)

    Article  Google Scholar 

  20. L. Jiang, G. Sun, Z. Zhou, S. Sun, Q. Wang, S. Yan, H. Li, J. Tian, J. Guo, B. Zhou, Q. Xin, J. Phys. Chem. B 109, 8774–8778 (2005)

    Article  Google Scholar 

  21. G.W. Watt, J. Chem. Educ. 11, 339 (1934)

    Article  Google Scholar 

  22. S.T. Dubas, V. Pimpan, Talanta 76, 29–33 (2008)

    Article  Google Scholar 

  23. S. Pandey, G.K. Goswami, K.K. Nanda, Int. J. Biol. Macromol. 51, 583–589 (2012)

    Article  Google Scholar 

  24. A.M. Giovannozzi, F. Pennecchi, P. Muller, P.B. Tivola, S. Roncari, A.M. Rossi, Anal. Bioanal. Chem. 407, 8423–8431 (2015)

    Article  Google Scholar 

  25. G.R. Lima, L. Mota, A. Miklos, J. Angster, Z. Dubovski, M.G. da Silva, M. Sthel, H. Vargas, Appl. Phys. B. 117, 333–341 (2014)

    Article  ADS  Google Scholar 

  26. W. Laminack, C. Baker, J.L. Gole, Air Qual. Atmos. Health 9, 231–239 (2016)

    Article  Google Scholar 

  27. F. Valentini, V. Biagiotti, C. Lete. G. Palleschi, J. Wang, Sens. Actuators B Chem. 128, 326–333 (2007)

    Article  Google Scholar 

  28. H.K. Boo, T.S. Ma, Microchim. Acta 66, 515–523 (1976)

    Article  Google Scholar 

  29. M. Aziz, S.S. Abbas, W.R.W. Baharom, Mater. Lett. 91, 31–34 (2013)

    Article  Google Scholar 

  30. S. Arya, A. Sharma, B. Singh, M. Riyas, P. Bandhoria, M. Aatif, V. Gupta, Opt. Mater. 78, 115–119 (2018)

    Article  ADS  Google Scholar 

  31. F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108, 8119–8123 (2004)

    Article  Google Scholar 

  32. U. Nithiyanantham, A. Ramadoss, S. Kundu, Dalton Trans. 45, 3506–3521 (2016)

    Article  Google Scholar 

  33. G. Hussain, D.S. Silvester, Electroanalysis 30, 75–83 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by SERB-DST (File no. EEQ/2016/000119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Arya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, S., Riyas, M., Sharma, A. et al. Electrochemical detection of ammonia solution using tin oxide nanoparticles synthesized via sol–gel route. Appl. Phys. A 124, 538 (2018). https://doi.org/10.1007/s00339-018-1968-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1968-8

Navigation