Skip to main content
Log in

The effect of Al content, substrate temperature and nitrogen flow rate on optical band gap and optical features of nanostructured TiAlN thin films prepared by reactive magnetron sputtering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, TiAlN thin films were prepared by using a dual reactive magnetron sputtering system on fused quartz substrates kept at room temperature and 400 °C; keeping nitrogen flow at 0.51 and 2.78 sccm, various DC and RF powers and the effect of these factors have been studied on the optical properties of the layers. The optical properties including absorption and transmission were studied by a UV–Visible spectrophotometer in the wavelength region (200–1100) nm. By plotting (αhν)2 and (αhν)1/2 versus the photon energy , the optical band gap was evaluated. Experimental results show that layers with high percentage of aluminum and nitrogen have higher gap with respect to layers having high titanium percentage. TiAlN thin films deposited with 2.78 sccm nitrogen flow rate possess optical direct band gap in the range of 3.8–5.1 eV and optical indirect band gap in the range of 1.1–3.4 eV. The variation of optical band gap of the films that deposited on the substrate with 400 °C and nitrogen flow rate of 2.78 sccm was different from other layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Standard cubic centimeter per minute.

References

  1. W. Grzesik, P. Nieslony, Wear 256, 108 (2004)

    Article  Google Scholar 

  2. G.M. Robinson, M.J. Jackson, M.D. Whitfield, J. Mater. Sci. 42, 2002 (2007)

    Article  ADS  Google Scholar 

  3. W. Schintlmeister, O. Pacher, J. Vac. Sci. Technol. 12, 743 (1975)

    Article  ADS  Google Scholar 

  4. C.H. Hsu, C.C. Lee, W.Y. Ho, Thin Solid Films 516, 4826 (2008)

    Article  ADS  Google Scholar 

  5. A. Kimura, H. Hasegawa, K. Yamada, T. Suzuki, Surf. Coat. Technol. 120–121, 438 (1999)

    Article  Google Scholar 

  6. H. Ohnuma, N. Nihira, A. Mitsuo, K. Toyoda, K. Kubota, T. Aizawa, Surf. Coat. Technol. 177–178, 623 (2004)

    Article  Google Scholar 

  7. S. Larpkiattaworn, J. Ikeuchi, C. Eamchotchawalit, Surf. Interface Anal. 41, 794 (2009)

    Article  Google Scholar 

  8. H. Randhawa, P.C. Johnson, R. Cunningham, J. Vac. Sci. Technol. A 6, 2136 (1988)

    Article  ADS  Google Scholar 

  9. P.C. Wo, P.R. Munroe, Z.F. Zhou, K.Y. Li, Z.H. Xie, Mater. Sci. Eng. A 527, 4447 (2010)

    Article  Google Scholar 

  10. A. Kimura, T. Murakami, K. Yamada, T. Suzuki, Thin Solid Films 382, 101 (2001)

    Article  ADS  Google Scholar 

  11. W.D. Münz, J. Vac. Sci. Technol. A 4, 2717 (1986)

    Article  ADS  Google Scholar 

  12. O. Knotek, W.D. Münz, T. Leyendecker, J. Vac. Sci. Technol. A 5, 2173 (1987)

    Article  ADS  Google Scholar 

  13. D.S. Rickerby, P.J. Burnett, Thin Solid Films 157, 195 (1988)

    Article  ADS  Google Scholar 

  14. J.T. Chen, J. Wang, F. Zhang, G.A. Zhang, X.Y. Fan, Z.G. Wu, P.X. Yan, J. Alloys Compd. 472, 91 (2009)

    Article  Google Scholar 

  15. R. Wuhrer, W.Y. Yeung, J. Mater. Sci. 37, 1993 (2002)

    Article  ADS  Google Scholar 

  16. S.K. Wu, H.C. Lin, P.L. Liu, Surf. Coat. Technol. 124, 97 (2000)

    Article  Google Scholar 

  17. D.F. Lii, J. Mater. Sci. 33, 2137 (1998)

    Article  ADS  Google Scholar 

  18. L. García-González, M.G. Garnica-Romo, J. Hernández-Torres, F.J. Espinoza-Beltrán, Braz. J. Chem. 24, 249 (2007)

    Google Scholar 

  19. V. Braic, M. Braic, M. Bălăceanu, A. Popescu, R.G. Rîpeanu, I. Tudor, Bul. Univ. Pet. Gaze din Ploieşti 2, 109 (2008)

    Google Scholar 

  20. C. Chokwatvikul, S. Larpkiattaworn, S. Surinphong, C. Busabok, P. Termsuksawad, J. Met. Mater. Miner. 21, 115 (2011)

    Google Scholar 

  21. C.W. Kim, K.H. Kim, Thin Solid Films 307, 113 (1997)

    Article  ADS  Google Scholar 

  22. J. Koo, J.W. Lee, T. Doh, Y. Kim, Y.D. Kim, H. Jeon, J. Vac. Sci. Technol. A 19, 2831 (2001)

    Article  ADS  Google Scholar 

  23. O. Cegil, B. Kilink, S. Sen, U. Sen, in 3rd international congress APMAS, Antalya, Turkey, vol. 125 (2014), p. 359

  24. J.C. Oliveira, A. Manaia, A. Cavaleiro, Thin Solid Films 516, 5032 (2008)

    Article  ADS  Google Scholar 

  25. M. Brogren, G.L. Harding, R. Karmhag, C.G. Ribbing, G.A. Niklasson, L. Stenmark, Thin Solid Films 370, 268 (2000)

    Article  ADS  Google Scholar 

  26. Y.J. Lee, S.W. Kang, Appl. Phys. Lett. 86, 071919 (2005)

    Article  ADS  Google Scholar 

  27. M. Nose, M. Zhou, E. Honbo, M. Yokota, S. Saji, Surf. Coat. Technol. 142–144, 211 (2001)

    Article  Google Scholar 

  28. L. Hultman, Vacuum 57, 1 (2000)

    Article  Google Scholar 

  29. R. Constantin, B. Miremad, Surf. Coat. Technol. 120–121, 728 (1999)

    Article  Google Scholar 

  30. H.A. Jehn, S. Hofmann, V.E. Rückborn, W.D. Münz, J. Vac. Sci. Technol. A 4, 2701 (1986)

    Article  ADS  Google Scholar 

  31. S. PalDey, S.C. Deevi, Mater. Sci. Eng. A 361, 1 (2003)

    Article  Google Scholar 

  32. R. Wuhrer, W.Y. Yeung, M.R. Phillips, G. McCredie, Thin Solid Films 290–291, 339 (1996)

    Article  Google Scholar 

  33. A. Schüler, V. Thommen, P. Reimann, P. Oelhafen, G. Francz, T. Zehnder, M. Düggelin, D. Mathys, R. Guggenheim, J. Vac. Sci. Technol. A 19, 922 (2001)

    Article  ADS  Google Scholar 

  34. H.C. Barshilia, N. Selvakumar, K.S. Rajam, A. Biswas, Sol. Energy Mater. Sol. Cells 92, 1425 (2008)

    Article  Google Scholar 

  35. H.C. Barshilia, B. Deepthi, A.S. Arun Prabhu, K.S. Rajam, Surf. Coat. Technol. 201, 329 (2006)

    Article  Google Scholar 

  36. H.C. Barshilia, K.S. Rajam, Surf. Coat. Technol. 201, 1827 (2006)

    Article  Google Scholar 

  37. A. Bird, School of Physical Sciences, B.Sc. thesis, Dublin City University (2010), pp. 1–165

  38. J. Singh, Optical Properties of Condensed  Matter and Applications (Wiley, Darwin, 2006)

  39. E.R. Arvinte, Minho University, Master thesis, Portugal (2011), pp. 1–118

  40. R. Jalali, M. Parhizkar, H. Bidadi, H. Naghshara, S.R. Hosseini, M. Jafari, J. Korean Phys. Soc. 66, 978 (2015)

    Article  ADS  Google Scholar 

  41. D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Appl. Phys. Lett. 79, 3767 (2001)

    Article  ADS  Google Scholar 

  42. M.H. Ehsani, H. Rezagholipour, Chalcogenide Lett. 8, 33 (2011)

    Google Scholar 

  43. J. Tauc, (Plenum Publishing Corporation, 1974), pp. 1–444

  44. P.U. Asogwa, J. Non-Oxide Glasses 2, 183 (2010)

    Google Scholar 

  45. E. Burstein, (Washington DC, 1953), pp. 632–633

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Jalali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali, R., Parhizkar, M., Bidadi, H. et al. The effect of Al content, substrate temperature and nitrogen flow rate on optical band gap and optical features of nanostructured TiAlN thin films prepared by reactive magnetron sputtering. Appl. Phys. A 122, 978 (2016). https://doi.org/10.1007/s00339-016-0515-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0515-8

Keywords

Navigation