Skip to main content
Log in

Spatial chemistry evolution during focused electron beam-induced deposition: origins and workarounds

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The successful application of functional nanostructures, fabricated via focused electron-beam-induced deposition (FEBID), is known to depend crucially on its chemistry as FEBID tends to strong incorporation of carbon. Hence, it is essential to understand the underlying mechanisms which finally determine the elemental composition after fabrication. In this study we focus on these processes from a fundamental point of view by means of (1) varying electron emission on the deposit surface; and (2) changing replenishment mechanism, both driven by the growing deposit itself. First, we revisit previous results concerning chemical variations in nanopillars (with a quasi-1D footprint) depending on the process parameters. In a second step we expand the investigations to deposits with a 3D footprint which are more relevant in the context of applications. Then, we demonstrate how technical setups and directional gas fluxes influence final chemistries. Finally, we put the findings in a bigger context with respect to functionalities which demonstrates the crucial importance of carefully set up fabrication processes to achieve controllable, predictable and reproducible chemistries for FEBID deposits as a key element for industrially oriented applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Utke, S. Moshkalev, P.E. Russell, Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications, 1st edn. (Oxford University Press, New York, 2012)

    Google Scholar 

  2. S.J. Randolph, J.D. Fowlkes, P.D. Rack, Crit. Rev. Sol. State 31, 55 (2006)

    Article  Google Scholar 

  3. W.F. van Dorp, C.W. Hagen, J. Appl. Phys. 104, 081301 (2008)

    Article  ADS  Google Scholar 

  4. W.F. van Dorp, T.W. Hansen, J.B. Wagner, J.T.B. De Hosson, Beilstein J. Nanotechnol. 4, 474 (2013)

    Article  Google Scholar 

  5. I. Utke, U. Gölzhäuser, Angew. Chem. Int. Ed. 49, 9328 (2010)

    Article  Google Scholar 

  6. H. Plank, C. Gspan, M. Dienstleder, G. Kothleitner, F. Hofer, Nanotechnology 19, 485302 (2008)

    Article  Google Scholar 

  7. H. Plank, T. Haber, C. Gspan, G. Kothleitner, F. Hofer, Nanotechnology 24, 1753605 (2013)

    Article  Google Scholar 

  8. A. Botman, J.J.L. Mulders, C.W. Hagen, Nanotechnology 20(1), 372001 (2009)

    Article  Google Scholar 

  9. M. Gavagnin, H.D. Wanzenboeck, D. Belić, E. Bertagnolli, ACS Nano 7(1), 777 (2013)

    Article  Google Scholar 

  10. M. Gabureac, L. Bernau, G. Boero, I. Utke, IEEE Trans. Nanotechnol. 12(5), 668 (2013)

    Article  Google Scholar 

  11. L. Serrano-Ramon, R. Cordoba, L.A. Rodriguez, C. Magen, E. Snoeck, C. Gatel, I. Serrano, M.R. Ibarra, J.M. De Teresa, ACS Nano 5(10), 7781 (2001)

    Article  Google Scholar 

  12. A. Fernandez-Pacheco, J.M. De Teresa, R. Cordoba, M.R. Ibarra, D. Petit, D.E. Read, L. O’Brien, E.R. Lewis, H.T. Zeng, R.P. Cowburn, Appl. Phys. Lett. 94(19), 192509 (2009)

    Article  ADS  Google Scholar 

  13. M. Gabureac, L. Bernau, I. Utke, G. Boero, Nanotechnology 21, 115503 (2010)

    Article  ADS  Google Scholar 

  14. A. Perentes, A. Bachmann, M. Leutenegger, I. Utke, C. Sandu, P. Hoffmann, Microelectron. Eng. 73–74, 412 (2004)

    Article  Google Scholar 

  15. I. Utke, M.G. Jenke, C. Röling, P.H. Thiesen, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, Nanoscale 3(7), 2718 (2011)

    Article  ADS  Google Scholar 

  16. C.T.H. Heerkens, M.J. Kamerbeek, W.F. van Dorp, C.W. Hagen, J. Hoekstra, Microelectron. Eng. 86, 961 (2009)

    Article  Google Scholar 

  17. Y. Guan, J.D. Fowlkes, S.T. Retterer, M.L. Simpson, P.D. Rack, Nanotechnology 19, 505302 (2008)

    Article  Google Scholar 

  18. M.G. Lassiter, T. Liang, P.D. Rack, J. Vac. Sci. Technol. B 26, 963 (2008)

    Article  Google Scholar 

  19. T. Liang, E. Frendberg, B. Lieberman, A. Stivers, J. Vac. Sci. Technol. B 23, 3101 (2005)

    Article  Google Scholar 

  20. K. Edinger, H. Becht, J. Bihr, V. Boegli, M. Budach, T. Hofmann, H.W.P. Koops, P. Kuschnerus, J. Oster, P. Spies, B. Weyrauch, J. Vac. Sci. Technol. B 22, 2902 (2004)

    Article  Google Scholar 

  21. A.J.M. Mackus, J.J.L. Mulders, M.C.M. van de Sanden, W.M.M. Kessels, J. Appl. Phys. 107, 116102 (2010)

    Article  ADS  Google Scholar 

  22. F. Porrati, R. Sachser, C.H. Schwalb, A.S. Frangakis, M. Huth, J. Appl. Phys. 109, 0637151 (2011)

    Article  Google Scholar 

  23. M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, G. Fantner, Beilstein J. Nanotechnol. 3, 597 (2012)

    Article  Google Scholar 

  24. F. Kolb, K. Schmoltner, M. Huth, A. Hohenau, J. Krenn, A. Klug, E.J.W. List, H. Plank, Nanotechnology 24, 305501 (2013)

    Article  Google Scholar 

  25. A. Botman, M. Hesselberth, J.J.L. Mulders, Microelectron. Eng. 85(5–6), 1139 (2008)

    Article  Google Scholar 

  26. S. Wang, Y.-M. Sun, Q. Wang, J.M. White, J. Vac. Sci. Technol. B 22(4), 1803 (2004)

    Article  Google Scholar 

  27. M.H. Ervin, D. Chang, B. Nichols, A. Wickenden, J. Barry, J. Melngailis, J. Vac. Sci. Technol. B 25(6), 2250 (2007)

    Article  Google Scholar 

  28. M. Takeguchi, M. Shimojo, K. Furuya, Appl. Phys. A 93(2), 439 (2008)

    Article  ADS  Google Scholar 

  29. A. Fernandez-Pacheco, J.M. De Teresa, R. Cordoba, M.R. Ibarra, J. Phys. D Appl. Phys. 42(05), 055005 (2009)

    Article  ADS  Google Scholar 

  30. K.L. Klein, S.J. Randolph, J.D. Fowlkes, L.F. Allard, H.M. Meyer, M.L. Simpson, P.D. Rack, Nanotechnology 19(34), 345705 (2008)

    Article  Google Scholar 

  31. J.J.L. Mulders, L.M. Belova, A. Riazanova, Nanotechnology 22(05), 055302 (2011)

    Article  ADS  Google Scholar 

  32. R. Cordoba, J. Sese, J.M. De Teresa, M.R. Ibarra, Microelectron. Eng. 87(5–8), 1550 (2010)

    Article  Google Scholar 

  33. R.M. Langford, D. Ozkaya, J. Sheridan, R. Chater, Microsc. Microanal. 10, 1122 (2004)

    Article  Google Scholar 

  34. N.A. Roberts, J.D. Fowlkes, G.A. Magel, P.D. Rack, Nanoscale 5(1), 408 (2013)

    Article  ADS  Google Scholar 

  35. N.A. Roberts, G.A. Magel, C.D. Hartfield, T.M. Moore, J.D. Fowlkes, P.D. Rack, J. Vac. Sci. Technol. A 30(4), 041404 (2012)

    Article  Google Scholar 

  36. V. Gopal, V.R. Radilovic, C. Daraio, S. Jin, P. Yang, E.A. Stach, Nano Lett. 4(11), 2059 (2004)

    Article  ADS  Google Scholar 

  37. R.M. Langford, T.X. Wang, D. Ozkaya, Microelectron. Eng. 84(5–8), 784 (2007)

    Article  Google Scholar 

  38. F. Porrati, R. Sachser, C.H. Schwalb, A.S. Frangakis, M. Huth, J. Appl. Phys. 109(6), 063715 (2011)

    Article  ADS  Google Scholar 

  39. C.H. Schwalb, C. Grimm, M. Baranowski, R. Sachser, F. Porrati, H. Reith, P. Das, J. Muller, F. Volklein, A. Kaya, M. Huth, Sensors 10, 9847 (2010)

    Article  Google Scholar 

  40. S. Frabboni, G.C. Gazzadi, L. Felisari, A. Spessot, Appl. Phys. Lett. 88(21), 213116 (2006)

    Article  ADS  Google Scholar 

  41. H. Plank, G. Kothleitner, F. Hofer, S.G. Michelitsch, C. Gspan, A. Hohenau, J. Krenn, J. Vac. Sci. Technol. B 29(5), 051801 (2011)

    Article  Google Scholar 

  42. S. Mehendale, J.J.L. Mulders, P.H.F. Trompenaars, Nanotechnology 24(14), 145303 (2013)

    Article  ADS  Google Scholar 

  43. H. Plank, J.H. Noh, J.D. Fowlkes, K. Lester, B.B. Lewis, P.D. Rack, ACS Appl. Mater. Interfaces 6(2), 1018 (2014)

    Article  Google Scholar 

  44. B. Geier, C. Gspan, R. Winkler, R. Schmied, J.D. Fowlkes, H. Fitzek, S. Rauch, J. Rattenberger, P.D. Rack, H. Plank, J. Appl. Chem. C (2014) (in review)

  45. M. Stermitz, S. Nau, J.H. Noh, R. Winkler, A. Orthacker, S. Rauch, G. Kothleitner, P.D. Rack, S. Sax, E.J.W. List-Kratochvil, H. Plank, Adv. Mater. (2014) (in review)

  46. J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J. Michael, Scanning Electron Microscopy and X-Ray Microanalysis, 4th edn. (Springer, New York, 2003)

    Book  Google Scholar 

  47. R. Winkler, J.D. Fowlkes, A. Szkudlarek, I. Utke, P.D. Rack, H. Plank, ACS Appl. Mater. Interfaces 6, 2987 (2014)

    Article  Google Scholar 

  48. D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin, Scanning 29(3), 92 (2007)

    Article  Google Scholar 

  49. I. Utke, V. Friedli, M. Purrucker, J. Michler, J. Vac. Sci. Technol. B 25, 2219 (2007)

    Article  Google Scholar 

  50. J.D. Fowlkes, P.D. Rack, ACS Nano 4, 1619 (2010)

    Article  Google Scholar 

  51. D.A. Smith, J.D. Fowlkes, P.D. Rack, Small 4, 1382 (2008)

    Article  Google Scholar 

  52. J.D. Fowlkes, S.J. Randolph, P.D. Rack, J. Vac. Sci. Technol. B 23, 2825 (2005)

    Article  Google Scholar 

  53. W.F. van Dorp, J.D. Wnuk, J.M. Gorham, H.D. Fairbrother, T.E. Madey, C.W. Hagen, J. Appl. Phys. 106, 74903 (2009)

    Article  Google Scholar 

  54. J.D. Wnuk, J.M. Gorham, S.G. Rosenberg, W.F. van Dorp, T.E. Madey, C.W. Hagen, H.D. Fairbrother, J. Phys. Chem. C 113, 2487 (2009)

    Article  Google Scholar 

  55. H. Plank, D.A. Smith, T. Haber, P.D. Rack, F. Hofer, ACS Nano 6, 286 (2012)

    Article  Google Scholar 

  56. D.A. Smith, J.D. Fowlkes, P.D. Rack, Nanotechnology 19, 415704 (2008)

    Article  Google Scholar 

  57. G. Arnold, R. Timilsina, J. Fowlkes, A. Orthacker, G. Kothleitner, P. D. Rack, H. Plank, Fundamental resolution limitations during electron induced direct write synthesis. Appl. Mater. Interfaces (2014). doi:10.1021/am5008003

  58. W.F. van Dorp, A. Beyer, M. Mainka, U. Gölzhäuser, T.W. Hansen, J.B. Wagner, C.W. Hagen, J.T.M. De Hosson, Nanotechnology 24, 345301 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the valuable support provided by Prof. Dr. Ferdinand Hofer, Prof. Dr. Gerald Kothleitner, Prof. Dr. Werner Grogger, Prof. Dr. Philip D. Rack, Dr. Jason Fowlkes, Dr. Ivo Utke, Dr. Julian Wagner, DI Roland Schmied, Alexander Melischnig, Laura Resch, and Martina Dienstleder. Special gratitude is given to Angus Young, Malcom Young, Phil Rudd, Cliff Williams, and Brian Johnson for constant inspiration. The authors also thank the FFG Austria (base project Nr. 830186), the European Union (EUROSTARS project E! 8213) and the COST funding (Nr. CM 1301) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Plank.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, R., Geier, B. & Plank, H. Spatial chemistry evolution during focused electron beam-induced deposition: origins and workarounds. Appl. Phys. A 117, 1675–1688 (2014). https://doi.org/10.1007/s00339-014-8496-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8496-y

Keywords

Navigation