Skip to main content
Log in

Evaluation of repeated single-point diamond turning on the deformation behavior of monocrystalline silicon via molecular dynamic simulations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A three-dimensional molecular dynamics simulation study is conducted to investigate repeated single-point turnings of a monocrystalline silicon specimen with diamond tools at nanometric scale. Morse potential energy function and Tersoff potential energy function are applied to model the silicon/diamond and silicon/silicon interactions, respectively. As repeated nano-cutting process on surfaces often involve the interactions between the consequent machining processes, repeated single-point diamond turnings are employed to investigate the phase transformation in the successive nano-cutting processes. The simulation results show that a layer of the damaged residual amorphous silicon remained beneath the surface after the first-time nano-cutting process. The amorphous phase silicon deforms and removes differently in the second nano-cutting process. By considering the coordination number (CN) of silicon atoms in the specimen, it is observed that there is an increase of atoms with six nearest neighbors during the second nano-cutting process. It suggests that the recovery of the crystalline phase from the amorphous phase occurred. Moreover, the instantaneous temperature distributions in the specimen are analyzed. Although the tangential force (F X ) and the thrust force (F Y ) become much smaller in the second cutting process, the material resistance rate is larger than the first cutting process. The larger resistance also induces the increase of local temperature between the cutting tool and the amorphous layer in the second cutting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.H. Lin, S.R. Jian, Y.S. Lai, P.F. Yang, Molecular dynamics simulation of nanoindentation-induced mechanical deformation and phase transformation in monocrystalline silicon. Nanoscale Res. Lett. 3, 71–75 (2008)

    Article  ADS  Google Scholar 

  2. Y.H. Lin, T.C. Chen, A molecular dynamics study of phase transformations in mono-crystalline Si under nanoindentation. Appl. Phys. A 92, 571–578 (2008)

    Article  ADS  Google Scholar 

  3. Q.X. Pei, C. Lu, H.P. Lee, Y.W. Zhang, Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations. Nanoscale Res. Lett. 4, 444–451 (2009)

    Article  ADS  Google Scholar 

  4. Q.H. Tang, F.H. Chen, MD simulation of phase transformations due to nanoscale cutting on silicon monocrystals with diamond tip. J. Phys. D-Appl. Phys. 39, 3674–3679 (2006)

    Article  ADS  Google Scholar 

  5. W.C.D. Cheong, L.C. Zhang, Molecular dynamics simulation of phase transformations in silicon monocrystals due to nanoindentation. Nanotechnology 11, 173–180 (2000)

    Article  ADS  Google Scholar 

  6. S. Shimada, N. Ikawa, T. Inamura, N. Takezawa, H. Ohmori, T. Sata, Brittle-Ductile transition phenomena in microindentation and micromachining. CIRP Ann.-Manuf. Technol. 44, 523–526 (1995)

    Article  Google Scholar 

  7. M.B. Cai, X.P. Li, M. Rahman, Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation. J. Mater. Process Technol. 192–193, 607–612 (2007)

    Article  Google Scholar 

  8. R. Rentsch, I. Inasaki, Effects of fluids on the surface generation in material removal processes: molecular dynamics simulation. CIRP Ann.-Manuf. Technol. 55, 601–604 (2006)

    Article  Google Scholar 

  9. Y.H. Lin, T.C. Chen, P.F. Yang, S.R. Jian, Y.S. Lai, Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline silicon. Appl. Surf. Sci. 254, 1415–1422 (2007)

    Article  ADS  Google Scholar 

  10. Z.C. Lin, J.C. Huang, A study of the estimation method of the cutting force for a conical tool under nanoscale depth of cut by molecular dynamics. Nanotechnology 19, 115701 (2008)

    Article  ADS  Google Scholar 

  11. L. Zhang, H. Huang, H.W. Zhao, Z.C. Ma, Y.H. Yang, X.L. Hu, The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation. Nanoscale Res. Lett. 8, 211 (2013)

    Article  ADS  Google Scholar 

  12. B.R. Lawn, A.G. Evans, D.B. Marshall, Elastic/Plastic indentation damage in ceramics: the median/radial crack system. J. Am. Ceram. Soc. 63, 574 (1980)

    Article  Google Scholar 

  13. C. Francois, Materials Handbook, A Concise Desktop Reference (Springer, Berlin, 2000), p. 348

    Google Scholar 

  14. J. Tersoff, Modelling solid-state chemistry: interatomic potentials for multicomponent system. Phys. Rev. B 39, 5566–5568 (1989)

    Article  ADS  Google Scholar 

  15. J. Tersoff, New empirical model for the structural properties of silicon. Phys. Rev. Lett. 56, 632–635 (1986)

    Article  ADS  Google Scholar 

  16. L.C. Zhang, H. Tanaka, Z. Liu, in Proceedings of the 19th International Congress on Theoretical Applied Mechanics, Kyoto, Japan, 1996

  17. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  MATH  Google Scholar 

  18. LAMMPS Molecular Dynamics Simulator (2011), http://lammps.sandia.gov

  19. J. Jang, M.J. Lance, S. Wen, T. Tsui, G.M. Pharr, Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior. Acta Mater. 53, 1759 (2005)

    Article  Google Scholar 

  20. A.P. Gerk, D. Tabor, Indentation hardness and semiconductor-metal transition of germanium and silicon. Nature 271, 732 (1978)

    Article  ADS  Google Scholar 

  21. K. Mylvaganam, L.C. Zhang, P. Eyben, J. Mody, W. Vandervorst, Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification. Nanotechnology 20, 305705 (2009)

    Article  Google Scholar 

  22. G.M. Pharr, W.C. Oliver, D.R. Clarke, The mechanical behavior of silicon during small-scale indentation. J. Electron. Mater. 19, 881–887 (1990)

    Article  ADS  Google Scholar 

  23. H. Olijnyk, Raman scattering in metallic Si and Ge up to 50 GPa. Phys. Rev. Lett. 68, 2232 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research is funded by the National Natural Science Foundation of China (grant no. 50905073, 51275198, 51105163), Special Projects for Development of National Major Scientific Instruments and Equipments (grant no. 2012YQ030075), National Hi-tech Research and Development Program of China (863 Program) (grant no. 2012AA041206), Key Projects of Science and Technology Development Plan of Jilin Province (grant no. 20110307) and Graduate Innovation Fund of Jilin University (grant no. 20121084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Zhao, H., Yang, Y. et al. Evaluation of repeated single-point diamond turning on the deformation behavior of monocrystalline silicon via molecular dynamic simulations. Appl. Phys. A 116, 141–150 (2014). https://doi.org/10.1007/s00339-014-8243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8243-4

Keywords

Navigation