Skip to main content
Log in

Trans-generational specificity within a cnidarian–algal symbiosis

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Ocean warming and other anthropogenic stresses threaten the symbiosis between tropical reef cnidarians and their dinoflagellate endosymbionts (Symbiodinium). Offspring of many cnidarians acquire their algal symbionts from the environment, and such flexibility could allow corals to respond to environmental changes between generations. To investigate the effect of both habitat and host genotype on symbiont acquisition, we transplanted aposymbiotic offspring of the common Caribbean octocoral Briareum asbestinum to (1) an environmentally different habitat that lacked B. asbestinum and (2) an environmentally similar habitat where local adults harbored Symbiodinium phylotypes that differed from parental colonies. Symbiont acquisition and establishment of symbioses over time was followed using a within-clade DNA marker (23S chloroplast rDNA) and a within-phylotype marker (unique alleles at a single microsatellite locus). Early in the symbiosis, B. asbestinum juveniles harbored multiple symbiont phylotypes, regardless of source (parent or site). However, with time (~4 yr), offspring established symbioses with the symbiont phylotype dominant in the parental colonies, regardless of transplant location. Within-phylotype analyses of the symbionts revealed a similar pattern, with offspring acquiring the allelic variant common in symbionts in the parental population regardless of the environment in which the offspring was reared. These data suggest that in this host species, host–symbiont specificity is a genetically determined trait. If this level of specificity is widespread among other symbiotic cnidarians, many cnidarian–algal symbioses may not be able to respond to rapid, climate change-associated environmental changes by means of between-generation switching of symbionts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abrego D, van Oppen MJH, Willis BL (2009a) Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol Ecol 18:3518–3531

    Article  PubMed  Google Scholar 

  • Abrego D, van Oppen MJH, Willis BL (2009b) Highly infectious symbiont dominates initial uptake in coral juveniles. Mol Ecol 18:3518–3531

    Article  PubMed  Google Scholar 

  • Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc Lond B Biol Sci 275:2273–2282

    Article  CAS  Google Scholar 

  • Andras JP (2010) Comparative population structure of the Caribbean sea fan coral Gorgonia ventalina, and its dinoflagellate endosymbiont, Symbiodinium sp. Ph.D. thesis, Cornell University, Ithaca, NY, p 158

  • Andras JP, Kirk NL, Coffroth MA, Harvell CD (2009) Isolation and characterization of microsatellite loci in Symbiodinium B1/B184, the dinoflagellate symbiont of the Caribbean sea fan coral, Gorgonia ventalina. Mol Ecol Resour 9:989–993

    Article  CAS  PubMed  Google Scholar 

  • Baird AH, Guest JR, Lewis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu Rev Ecol Evol Syst 40:551–571

    Article  Google Scholar 

  • Baird A, Cumbo VR, Leggat W, Rodriguez-Lanetty M (2007) Fidelity and flexibility in coral symbioses. Mar Ecol Prog Ser 347:307–309

    Article  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral–algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Baker DM, Andras JP, Jordan-Garza AG, Fogel ML (2013) Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades. ISME J 7:1248–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baums IB, Devlin-Durante MK, LaJeunesse TC (2014) New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol 23:4203–4215

    Article  PubMed  Google Scholar 

  • Brazeau DA, Lasker HR (1990) Sexual reproduction and external brooding by the Caribbean gorgonian Briareum asbestinum. Mar Biol 104:465–474

    Article  Google Scholar 

  • Cantin NE, van Oppen MJH, Willis BL, Mieog JC, Negri AP (2009) Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28:405–414

    Article  Google Scholar 

  • Coffroth MA, Santos SR (2005) Genetic diversity in the genus Symbiodinium. Protist 156:19–34

    Article  CAS  PubMed  Google Scholar 

  • Coffroth MA, Goulet TL, Santos SR (2001) Early ontogenic expression of selectivity in a cnidarian–algal symbiosis. Mar Ecol Prog Ser 227:221–232

    Google Scholar 

  • Coffroth MA, Lewis CLF, Santos SR, Weaver JL (2006) Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians. Curr Biol 16:R985–R987

    Article  CAS  PubMed  Google Scholar 

  • Coffroth MA, Lasker HR, Diamond ME, Bruenn JA, Bermingham E (1992) DNA fingerprints of a gorgonian coral: a method for detecting clonal structure in a vegetative species. Mar Biol 114:317–325

    Article  CAS  Google Scholar 

  • Coffroth MA, Poland DM, Petrou EL, Brazeau DA, Holmberg JC (2010) Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. PLoS One 5:e13258

    Article  PubMed  PubMed Central  Google Scholar 

  • Cumbo VR, Baird AH, van Oppen MJH (2013) The promiscuous larvae: flexibility in the establishment of symbiosis in corals. Coral Reefs 32:111–120

    Article  Google Scholar 

  • Cunning R, Gillette P, Capo TR, Galvez K, Baker AC (2015) Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs 34:155–160

    Article  Google Scholar 

  • Douglas AE (1998) Host benefit and the evolution of specialization in symbioses. Heredity 81:599–603

    Article  Google Scholar 

  • Dunn SR, Weis VM (2009) Apoptosis as a post-phagocytic winnowing mechanism in a coral–dinoflagellate mutualism. Environ Microbiol 11:268–276

    Article  PubMed  Google Scholar 

  • Fay SA, Weber MX (2012) The occurrence of mixed infections of Symbiodinium (Dinoflagellata) within individual hosts. J Phycol 48:1306–1316

    Article  PubMed  Google Scholar 

  • Fitt WK (1985) Effect of different strains of the zooxanthellae Symbiodinium microadriaticum on growth and survival of their coelenterate and molluscan hosts. Proc 5th Int Coral Reef Symp, 6:131–136

  • Gómez-Cabrera MDC, Ortiz JC, Loh WKW, Ward S, Hoegh-Guldberg O (2008) Acquisition of symbiotic dinoflagellates (Symbiodinium) by juveniles of the coral Acropora longicyathus. Coral Reefs 27:219–226

    Article  Google Scholar 

  • Goulet TL (2006) Most corals may not change their symbionts. Mar Ecol Prog Ser 321:1–7

    Article  Google Scholar 

  • Goulet TL, Coffroth MA (2003) Stability of an octocoral–algal symbiosis over time and space. Mar Ecol Prog Ser 250:117–124

    Article  Google Scholar 

  • Hannes AR, Barbeitos M, Coffroth MA (2009) Stability of symbiotic dinoflagellate type in the octocoral Briareum asbestinum. Mar Ecol Prog Ser 391:65–72

    Article  Google Scholar 

  • Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH (2012) Coral thermal tolerance is shaped by local adaptation of photosymbionts. Nat Clim Chang 2:116–120

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental panel on climate change. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press, Cambridge, 1535pp

  • Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc Lond B Biol Sci 275:1359–1365

    Article  CAS  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  • LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–575

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse TC, Smith RT, Finney J, Oxenford H (2009) Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc R Soc Lond B Biol Sci 276:4139–4414

    Article  Google Scholar 

  • LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-Guldberg O, Fitt WK (2010) Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 37:785–800

    Article  Google Scholar 

  • Lee MJ, Jeong HJ, Jang SH, Lee SY, Kang NS, Lee KH, Kim HS, Wham DC, LaJeunesse TC (2016) Most low-abundance “background” Symbiodinium spp. are transitory and have minimal functional significance for symbiotic corals. Microb Ecol 71:771–783

    Article  PubMed  Google Scholar 

  • Lewis CL, Coffroth MA (2004) The acquisition of exogenous algal symbionts by an octocoral after bleaching. Science 304:1490–1492

    Article  CAS  PubMed  Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  CAS  PubMed  Google Scholar 

  • Markell DA, Wood-Charlson EM (2010) Immunocytochemical evidence that symbiotic algae secrete potential recognition signal molecules in hospite. Mar Biol 157:1105–1111

    Article  CAS  Google Scholar 

  • Mieog JC, van Oppen MJH, Cantin NE, Stam WT, Olsen JL (2007) Real-time PCR reveals a high incidence of clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 26:449–457

    Article  Google Scholar 

  • Mohamed AR, Cumbo V, Harii S, Shinzato C, Chan CX, Ragan MA, Bourne DG, Willis BL, Ball EE, Satoh N, Miller DJ (2016) The transcriptomic response of the coral Acropora digitifera to a competent Symbiodinium strain: the symbiosome as an arrested early phagosome. Mol Ecol 25:3127–3141

    Article  CAS  PubMed  Google Scholar 

  • Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344:895–898

    Article  CAS  PubMed  Google Scholar 

  • Parkinson JE (2014) The role of intraspecific diversity in coral–algal symbiosis ecology and evolution. Ph.D. thesis, Pennsylvania State University, PA, p 221

  • Parkinson JE, Baums IB (2014) The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral–algal associations. Front Microbiol 5:445

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkinson JE, Coffroth MA, LaJeunesse TC (2015) New species of clade B Symbiodinium (Dinophyceae) from the Greater Caribbean belong to different functional guilds: S. aenigmatum sp. nov., S. antillogorgium sp. nov., S. endomadracis sp. nov., and S. pseudominutum sp. nov. J Phycol 51:850–858

    Article  PubMed  Google Scholar 

  • Pettay DT, LaJeunesse TC (2007) Microsatellites from clade B Symbiodinium spp. specialized for Caribbean corals in the genus Madracis. Mol Ecol Notes 7:1271–1274

    Article  CAS  Google Scholar 

  • Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497

    Article  CAS  PubMed  Google Scholar 

  • Poland DM (2010) Specificity versus flexibility in cnidarian–algal symbioses. Ph.D. thesis, State University of New York, Buffalo, NY, p 179

  • Poland DM, Mansfield JM, Hannes AR, Lewis CLF, Shearer TL, Connelly SJ, Kirk NL, Coffroth MA (2013) Variation in Symbiodinium communities in juvenile Briareum asbestinum (Cnidaria: Octocorallia) over temporal and spatial scales. Mar Ecol Prog Ser 476:23–37

    Article  Google Scholar 

  • Puill-Stephan E, Seneca FO, Mille DJ, van Oppen MJH, Willis BL (2012) Expression of putative immune response genes during early ontogeny in the coral Acropora millepora. PLoS One 7:e39099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putnam HM, Gates RD (2015) Preconditioning in the reef-building coral Pocillopora damicornis and the potential for transgenerational acclimatization in coral larvae under future climate change conditions. J Exp Biol 218:2365–2372

    Article  PubMed  Google Scholar 

  • Quigley KM, Davies SW, Kenkel CD, Willis BL, Matz MV, Bay LK (2014) Deep-sequencing method for quantifying background abundances of Symbiodinium types: exploring the rare Symbiodinium bioshpere in reef building corals. PLoS One 9:e94297

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Lanetty M, Wood-Charlson E, Hollingsworth L, Krupp DA, Weis VM (2006) Dynamics of infection and localization of dinoflagellates endosymbionts in larvae of the coral Fungia scutaria during the onset of symbiosis. Mar Biol 149:713–719

    Article  Google Scholar 

  • Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral–algal symbiosis. Proc Natl Acad Sci U S A 92:2850–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos SR, Coffroth MA (2003) Molecular genetic evidence that dinoflagellates belonging to the genus Symbiodinium Freudenthal are haploid. Biol Bull 241:10–20

    Article  Google Scholar 

  • Santos SR, Gutierrez-Rodriguez C, Coffroth MA (2003a) Phylogenetic identification of symbiotic dinoflagellates via length heteroplasmy in domain V of chloroplast large subunit (cp23S)-rDNA sequences. Mar Biotechnol 5:130–140

    CAS  PubMed  Google Scholar 

  • Santos SR, Gutierrez-Rodriguez C, Lasker HR, Coffroth MA (2003b) Symbiodinium sp. associations in the gorgonian Pseudopterogorgia elisabethae in the Bahamas: high levels of genetic variability and population structure in symbiotic dinoflagellates. Mar Biol 143:111–120

    Article  Google Scholar 

  • Schoenberg DA, Trench RK (1980) Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Fruedenthal, and specificity in its symbiosis with marine invertebrates. III. Specificity and infectivity of Symbiodinium microadriaticum. Proc R Soc Lond B Biol Sci 207:445–460

    Article  Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–92

    Article  CAS  Google Scholar 

  • Silverstein RN, Correa AMS, Baker AC (2012) Specificity is rarely absolute in coral–algal symbiosis: implications for coral response to climate change. Proc R Soc Lond B Biol Sci 279:2609–2618

    Article  Google Scholar 

  • Thornhill DJ, Xiang Y, Fitt WK, Santos SR (2009) Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS One 4:e6262

    Article  PubMed  PubMed Central  Google Scholar 

  • Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC (2014) Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68:352–367

    Article  CAS  PubMed  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006) Multi-year, seasonal genotypic surveys of coral–algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722

    Article  Google Scholar 

  • Thornhill DJ, Xiang Y, Pettay DT, Zhong M, Santos SR (2013) Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol Ecol 22:4499–4515

    Article  CAS  PubMed  Google Scholar 

  • van Oppen MJH, Oliver JK, Putnam HM, Gates RD (2015) Building coral reef resilience through assisted evolution. Proc Natl Acad Sci U S A 112:2307–2313

    Article  PubMed  PubMed Central  Google Scholar 

  • Voolstra C, Schwarz J, Schnetzer J, Sunagawa S, DeSalvo M, Szmant A, Coffroth MA, Medina M (2009) The host transcriptome remains unaltered during the establishment of coral–algal symbiosis. Mol Ecol 18:1823–1833

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Yang S, Tang F, Zhu H (2012) Symbiosis specificity in the legume–rhizobial mutualism. Cell Microbiol 14:334–342

    Article  PubMed  Google Scholar 

  • Yang S, Tang F, Gai M, Krishnan HB, Zhu H (2010) R gene-controlled host specificity in the legume–rhizobia symbiosis. Proc Natl Acad Sci U S A 107:18735–18740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

For logistical and technical assistance, we thank A. Hannes, C. Lewis, P. Bouwma, Keys Marine Lab staff, Aquarium of Niagara, Sherwood Scuba, Florida Keys National Marine Sanctuary, and J. Stamos. For their help on the manuscript, we thank J. Parkinson and S.E. McIlroy. The research was supported by the National Science Foundation OCE 99-07319, OCE 04-24994, and OCE-09-26822 (MAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Coffroth.

Additional information

Communicated by Biology Editor Dr. Simon Davy

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poland, D.M., Coffroth, M.A. Trans-generational specificity within a cnidarian–algal symbiosis. Coral Reefs 36, 119–129 (2017). https://doi.org/10.1007/s00338-016-1514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-016-1514-0

Keywords

Navigation