Skip to main content

Advertisement

Log in

Thermal stress response in a dinoflagellate-bearing nudibranch and the octocoral on which it feeds

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

In this study, we examined two non-scleractinian taxa, the rare nudibranch Phyllodesmium lizardensis and Bayerxenia sp., the octocoral on which the nudibranch lives and feeds, to investigate the effect of experimental heat stress on their symbioses with Symbiodinium. Bleaching has not been studied in nudibranchs. Bayerxenia sp. belongs to the alcyonacea family Xeniidae, members of which are known to be heat sensitive, but the genus has never been subject to heat stress experiments or bleaching observations. While qPCR did not reveal any changes to the symbiont community composition, the two host species responded differently to increased temperature. There were changes in the relative proportion of tissue types in Bayerxenia sp., but these were not attributable to the temperature treatment. Bayerxenia sp. exhibited no changes in cellular structure (apoptosis or cell necrosis), or symbiont functioning, cell size, density, or cladal community structure. On the other hand, the host, P. lizardensis, experienced tissue loss and symbiont densities decreased significantly with the majority of the remaining symbiont cells significantly degenerated after the heat stress. This decrease did not influence symbiont community composition, symbiont cell size, or photosynthetic efficiency. While the bleaching process in nudibranchs was demonstrated for the first time, the physiological and molecular pathways leading to this response still require attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc Lond B Biol Sci 275:2273–2282

    Article  CAS  Google Scholar 

  • Addessi L (2001) Giant clam bleaching in the lagoon of Takapoto atoll (French Polynesia). Coral Reefs 19:220-220

  • Ainsworth TD, Hoegh-Guldberg O, Heron SF, Skirving WJ, Leggat W (2008) Early cellular changes are indicators of pre-bleaching thermal stress in the coral host. J Exp Mar Bio Ecol 364:63–71

    Article  Google Scholar 

  • Anderson MJ (2005) PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, New Zealand

    Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond B Biol Sci 273:2305–2312

    Article  Google Scholar 

  • Buck BH, Rosenthal H, Saint-Paul U (2002) Effect of increased irradiance and thermal stress on the symbiosis of Symbiodinium microadriaticum and Tridacna gigas. Aquat Living Resour 15:107–117

    Article  Google Scholar 

  • Burghardt I, Schrödl M, Wagele H (2008a) Three new solar-powered species of the genus Phyllodesmium Ehrenberg, 1831 (Mollusca : Nudibranchia : Aeolidioidea) from the tropical Indo-Pacific, with analysis of their photosynthetic activity and notes on biology. J Molluscan Stud 74:277–292

    Article  Google Scholar 

  • Burghardt I, Stemmer K, Wagele H (2008b) Symbiosis between Symbiodinium (Dinophyceae) and various taxa of Nudibranchia (Mollusca : Gastropoda), with analyses of long-term retention. Org Divers Evol 8:66–76

    Article  Google Scholar 

  • Castillo KD, Helmuth BST (2005) Influence of thermal history on the response of Montastraea annularis to short-term temperature exposure. Mar Biol 148:261–270

    Article  Google Scholar 

  • Clarke K, Gorley R (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth, UK

    Google Scholar 

  • Drohan AF, Thoney DA, Baker AC (2005) Synergistic effect of high temperature and ultraviolet-B radiation on the gorgonian Eunicea tourneforti (Octocorallia : Alcyonacea : Plexauridae). Bull Mar Sci 77:257–266

    Google Scholar 

  • Dunn SR, Thomason JC, Le Tissier MDA, Bythell JC (2004) Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration. Cell Death Differ 11:1213–1222

    Article  CAS  PubMed  Google Scholar 

  • Dunn SR, Bythell JC, Le Tissier MDA, Burnett WJ, Thomason JC (2002) Programmed cell death and cell necrosis activity during hyperthermic stress-induced bleaching of the symbiotic sea anemone Aiptasia sp. J Exp Mar Bio Ecol 272:29–53

    Article  Google Scholar 

  • Elias H, Hyde DM (1980) An elementary introduction to stereology (quantitative microscopy). Am J Anat 159:411–446

    Article  Google Scholar 

  • Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65

    Article  Google Scholar 

  • FitzPatrick S, Liberatore K, Garcia J, Burghardt I, Colman D, Moquin S, Takacs-Vesbach C, Shepherd U (2012) Symbiodinium diversity in the soft coral Heteroxenia sp. and its nudibranch predator Phyllodesmium lizardensis. Coral Reefs 31:895–905

    Article  Google Scholar 

  • Fromont J, Garson M (1999) Sponge bleaching on the West and East coasts of Australia. Coral Reefs 18:340-340

  • Gates RD, Baghdasarian G, Muscatine L (1992) Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol Bull 182:324–332

    Article  Google Scholar 

  • Gilbert JA, Hill R, Doblin MA, Ralph PJ (2012) Microbial consortia increase thermal tolerance of corals. Mar Biol 159:1763–1771

    Article  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: Facts, hypotheses and implications. Glob Chang Biol 2:495–509

    Article  Google Scholar 

  • Goulet TL, Coffroth MA (2003) Stability of an octocoral-algal symbiosis over time and space. Mar Ecol Prog Ser 250:117–124

    Article  Google Scholar 

  • Goulet TL, Cook CB, Goulet D (2005) Effect of short-term exposure to elevated temperatures and light levels on photosynthesis of different host-symbiont combinations in the Aiptasia pallida/ Symbiodinium symbiosis. Limnol Oceanogr 50:1490–1498

    Article  CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Iglesias-Prieto R, Matta JL, Robins WA, Trench RK (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc Natl Acad Sci USA 89:10302–10305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jimenez IM, Kuhl M, Larkum AWD, Ralph PJ (2011) Effects of flow and colony morphology on the thermal boundary layer of corals. J R Soc Interface 8:1785–1795

    Article  PubMed Central  PubMed  Google Scholar 

  • Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269

    Article  Google Scholar 

  • Kuguru B, Winters G, Beer S, Santos SR, Chadwick NE (2007) Adaptation strategies of the corallimorpharian Rhodactis rhodostoma to irradiance and temperature. Mar Biol 151:1287–1298

    Article  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology and phylogeny of endosymbiontic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Smith R, Walther M, Pinzon J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magana AL, Perez AL, Reyes-Bonilla H, Warner ME (2010) Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proc R Soc Lond B Biol Sci 277:2925–2934

    Article  Google Scholar 

  • Loram JE, Boonham N, O’Toole P, Trapido-Rosenthal HG, Douglas AE (2007) Molecular quantification of symbiotic dinoflagellate algae of the genus Symbiodinium. Biol Bull 212:259–268

    Article  CAS  PubMed  Google Scholar 

  • Magalon H, Flot JF, Baudry E (2007) Molecular identification of symbiotic dinoflagellates in Pacific corals in the genus Pocillopora. Coral Reefs 26:551–558

    Article  Google Scholar 

  • Mayfield AB, Hirst MB, Gates RD (2009) Gene expression normalization in a dual-compartment system: a real-time quantitative polymerase chain reaction protocol for symbiotic anthozoans. Mol Ecol Resour 9:462–470

    Article  PubMed  Google Scholar 

  • Mieog JC, van Oppen MJH, Cantin NE, Stam WT, Olsen JL (2007) Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 26:449–457

    Article  Google Scholar 

  • Mouillot D, Bellwood DR, Baraloto C, Chave J, Galzin R, Harmelin-Vivien M, Kulbicki M, Lavergne S, Lavorel S, Mouquet N, Paine CET, Renaud J, Thuiller W (2013) Rare Species Support Vulnerable Functions in High-Diversity Ecosystems. PLoS Biol 11:e1001569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muller-Parker G, Pierce-Cravens J, Bingham BL (2007) Broad thermal tolerance of the symbiotic dinoflagellate Symbiodinium muscatinei (Dinophyta) in the sea anemone Anthopleura elegantissima (Cnidaria) from northern latitudes. J Phycol 43:25–31

    Article  CAS  Google Scholar 

  • Oliver TA, Palumbi SR (2011) Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30:429–440

    Article  Google Scholar 

  • Palmer CV, Bythell JC, Willis BL (2012) Enzyme activity demonstrates multiple pathways of innate immunity in Indo-Pacific anthozoans. Proc R Soc Lond B Biol Sci 279:3879–3887

    Article  CAS  Google Scholar 

  • Reinicke GB (1995) Xeniidae des Roten Meeres (Octocorallia, Alcyonacea)—Beiträge zur Systematik und Ökologie. Essener Ökologische Schriften 6:1–168

    Google Scholar 

  • Rowan R (2004) Coral bleaching - thermal adaptation in reef coral symbionts. Nature 430:742-742

  • Sabourault C, Ganot P, Moya A, Furla P (2012) Endosymbiosis drives transcriptomic adjustments and genomic adaptations in cnidarians. Proc 12th Int Coral Reef Symp 7A_1

  • Santos SR, Taylor DJ, Kinzie RA, Hidaka M, Sakai K, Coffroth MA (2002) Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol Phylogenet Evol 23:97–111

    Article  CAS  PubMed  Google Scholar 

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts - symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43

    Article  Google Scholar 

  • Stimson J, Sakai K, Sembali H (2002) Interspecific comparison of the symbiotic relationship in corals with high and low rates of bleaching-induced mortality. Coral Reefs 21:409–421

    Google Scholar 

  • Strychar KB, Coates M, Sammarco PW, Piva TJ, Scott PT (2005) Loss of Symbiodinium from bleached soft corals Sarcophyton ehrenbergi, Sinularia sp. and Xenia sp. J Exp Mar Bio Ecol 320:159–177

    Article  Google Scholar 

  • Thornhill D, LaJeunesse TC, Santos CR (2007) Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Mol Ecol 16:5326–5340

    Article  CAS  PubMed  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722

    Article  Google Scholar 

  • Uthicke S, Vogel N, Doyle J, Schmidt C, Humphrey C (2012) Interactive effects of climate change and eutrophication on the dinoflagellate-bearing benthic foraminifer Marginopora vertebralis. Coral Reefs 31:401–414

    Article  Google Scholar 

  • van Oppen MJH, Mieog JC, Sanchez CA, Fabricus KE (2005) Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Mol Ecol 14:2403–3484

    Article  PubMed  Google Scholar 

  • Vicente VP (1990) Response of sponges with autotrophic endosymbionts during the coral-bleaching episode in Puerto Rico. Coral Reefs 8:199–202

    Article  Google Scholar 

  • Waegele H, Vonnemann V, Waegele JW (2003) Towards a phylogeny of the Opisthobranchia. In: Lydeard C, Lindberg D (eds) Molecular systematics and phylogeography of mollusks. Smithsonian Institution Press, Washington, DC, pp 185–228

    Google Scholar 

  • Ziegler M, Uthicke S (2011) Photosynthetic plasticity of endosymbionts in larger benthic coral reef Foraminifera. J Exp Mar Bio Ecol 407:70–80

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank S. Perry, J. Schmieder (Bonn) for support with histological analyses and T. Alpermann (Frankfurt) for advice on interpretation of qPCR data. We are grateful to Lizard Island Research Station staff and for assistance with field work by C. Carrasco and S. Moquin. The trip to Lizard Island was funded by the German National Academic Foundation (M.Z.). The molecular work was funded by a NSF Grant (ID0436605), a NIH Post-Baccalaureate Research Education Grant (K.L.L.) (R25GM075149), a UNM Research Allocations grant, an anonymous donation to the UNM Biology Department, and NIH Grant 1P20RR18754 to UNM’s Molecular Biology Facility. We thank the editor and anonymous reviewers for their thoughtful comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Ziegler.

Additional information

Communicated by Biology Editor Dr. Ruth Gates

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziegler, M., FitzPatrick, S.K., Burghardt, I. et al. Thermal stress response in a dinoflagellate-bearing nudibranch and the octocoral on which it feeds. Coral Reefs 33, 1085–1099 (2014). https://doi.org/10.1007/s00338-014-1204-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-014-1204-8

Keywords

Navigation