Skip to main content

Advertisement

Log in

Variability of bronchial measurements obtained by sequential CT using two computer-based methods

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the variability of lumen (LA) and wall area (WA) measurements obtained on two successive MDCT acquisitions using energy-driven contour estimation (EDCE) and full width at half maximum (FWHM) approaches. Both methods were applied to a database of segmental and subsegmental bronchi with LA > 4 mm2 containing 42 bronchial segments of 10 successive slices that best matched on each acquisition. For both methods, the 95% confidence interval between repeated MDCT was between –1.59 and 1.5 mm2 for LA, and –3.31 and 2.96 mm2 for WA. The values of the coefficient of measurement variation (CV10, i.e., percentage ratio of the standard deviation obtained from the 10 successive slices to their mean value) were strongly correlated between repeated MDCT data acquisitions (r > 0.72; p < 0.0001). Compared with FWHM, LA values obtained using EDCE were higher for LA < 15 mm2, whereas WA values were lower for bronchi with WA < 13 mm2; no systematic EDCE underestimation or overestimation was observed for thicker-walled bronchi. In conclusion, variability between CT examinations and assessment techniques may impair measurements. Therefore, new parameters such as CV10 need to be investigated to study bronchial remodeling. Finally, EDCE and FWHM are not interchangeable in longitudinal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EDCE:

energy-driven contour estimation

FWHM:

full width at half maximum

CT:

computed tomography

MDCT:

multidetector-row computed tomography

LA:

lumen area

WA:

wall area

CV10 :

coefficient of variation of bronchial measurements, defined as the ratio of the standard deviation of measurements obtained on 10 successive slices to their mean, multiplied by 100 and expressed as a percentage

SD:

standard deviation

References

  1. McParland BE, Macklem PT, Pare PD (2003) Airway wall remodeling: friend or foe. J Appl Physiol 95:426–434

    PubMed  Google Scholar 

  2. Nakano Y, Muller NL, King GG et al (2002) Quantitative assessment of airway remodeling using high-resolution CT. Chest 122:271S–275S

    Article  PubMed  Google Scholar 

  3. de Jong PA, Muller NL, Pare PD, Coxson HO (2005) Computed tomographic imaging of the airways: relationship to structure and function. Eur Respir J 26:140–152

    Article  PubMed  Google Scholar 

  4. Nakano Y, Muro S, Sakai H et al (2000) Computed tomographic measurements of airway dimensions and emphysema in smokers. Correlation with lung function. Am J Respir Crit Care Med 162:1102–1108

    PubMed  CAS  Google Scholar 

  5. Berger P, Perot V, Desbarats P et al (2005) Airway wall thickness in cigarette smokers: quantitative thin-section CT assessment. Radiology 235:1055–1064

    Article  PubMed  Google Scholar 

  6. Hasegawa M, Nasuhara Y, Onodera Y et al (2006) Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173:1309–1315

    Article  PubMed  Google Scholar 

  7. Orlandi I, Moroni C, Camiciottoli G et al (2005) Chronic obstructive pulmonary disease: thin-section CT measurement of airway wall thickness and lung attenuation.. Radiology 234:604–610

    Article  PubMed  Google Scholar 

  8. Nakano Y, Wong JC, de Jong PA et al (2005) The prediction of small airway dimensions using computed tomography. Am J Respir Crit Care Med 171:142–146

    Article  PubMed  Google Scholar 

  9. Awadh N, Muller NL, Park CS, Abboud RT, FitzGerald JM (1998) Airway wall thickness in patients with near fatal asthma and control groups: assessment with high resolution computed tomographic scanning. Thorax 53:248–253

    Article  PubMed  CAS  Google Scholar 

  10. Gono H, Fujimoto K, Kawakami S, Kubo K (2003) Evaluation of airway wall thickness and air trapping by HRCT in asymptomatic asthma. Eur Respir J 22:965–97111

    Article  PubMed  CAS  Google Scholar 

  11. Kasahara K, Shiba K, Ozawa T, Okuda K, Adachi M (2002) Correlation between the bronchial subepithelial layer and whole airway wall thickness in patients with asthma. Thorax 57:242–246

    Article  PubMed  CAS  Google Scholar 

  12. Lee YM, Park JS, Hwang JH et al (2004) High-resolution CT findings in patients with near-fatal asthma: comparison of patients with mild-to-severe asthma and normal control subjects and changes in airway abnormalities following steroid treatment. Chest 126:1840–1848

    Article  PubMed  Google Scholar 

  13. Little SA, Sproule MW, Cowan MD et al (2002) High resolution computed tomographic assessment of airway wall thickness in chronic asthma: reproducibility and relationship with lung function and severity. Thorax 57:247–253

    Article  PubMed  CAS  Google Scholar 

  14. Niimi A, Matsumoto H, Amitani R et al (2000) Airway wall thickness in asthma assessed by computed tomography. Relation to clinical indices. Am J Respir Crit Care Med 162:1518–1523

    PubMed  CAS  Google Scholar 

  15. Niimi A, Matsumoto H, Amitani R et al (2004) Effect of short-term treatment with inhaled corticosteroid on airway wall thickening in asthma. Am J Med 116:725–731

    Article  PubMed  CAS  Google Scholar 

  16. Matsuoka S, Kurihara Y, Nakajima Y et al (2005) Serial change in airway lumen and wall thickness at thin-section CT in asymptomatic subjects. Radiology 234:595–603

    Article  PubMed  Google Scholar 

  17. Brown RH (2004) Marching to the beat of different drummers: individual airway response diversity. Eur Respir J 24:193–194

    Article  PubMed  CAS  Google Scholar 

  18. Brillet PY, Fetita CI, Beigelman-Aubry C et al (2007) Quantification of bronchial dimensions at MDCT using dedicated software. Eur Radiol 17:1483–1489

    Article  PubMed  CAS  Google Scholar 

  19. Montaudon M, Berger P, de Dietrich G et al (2007) Assessment of airways with three-dimensional quantitative thin-section CT: in vitro and in vivo validation. Radiology 242:563–572

    Article  PubMed  Google Scholar 

  20. Coxson HO, Rogers RM (2005) Quantitative computed tomography of chronic obstructive pulmonary disease. Acad Radiol 12:1457–1463

    Article  PubMed  Google Scholar 

  21. Matsumoto H, Niimi A, Tabuena RP et al (2007) Airway wall thickening in patients with cough variant asthma and nonasthmatic chronic cough. Chest 131:1042–1049

    Article  PubMed  Google Scholar 

  22. Fetita CI, Preteux F, Beigelman-Aubry C, Grenier P (2004) Pulmonary airways: 3-D reconstruction from multislice CT and clinical investigation. IEEE Trans Med Imaging 23:1353–1364

    Article  PubMed  Google Scholar 

  23. Saragaglia A, Fetita C, Prêteux F, Brillet PY, Grenier PA (2005) Accurate 3D quantification of bronchial parameters in MDCT. Proc Int Soc Optic Eng (SPIE) 5916:323–334

    Google Scholar 

  24. King GG, Muller NL, Pare PD (1999) Evaluation of airways in obstructive pulmonary disease using high-resolution computed tomography. Am J Respir Crit Care Med 159:992–1004

    PubMed  CAS  Google Scholar 

  25. Piegl L (1991) On NURBS: a survey. IEEE Comput Graph Appl 11:55–71

    Article  Google Scholar 

  26. D’Souza ND, Reinhardt J, Hoffman E (1996) ASAP: interactive quantification of 2D airway geometry. Proc Int Soc Optic Eng (SPIE) 2709:180–196

    Google Scholar 

  27. Prêteux F, Fetita CI, Grenier PA, Capderou A (1999) Modeling, segmentation and caliber estimation of bronchi in high-resolution computerized tomography. J Electronic Imag 8:36–45

    Article  Google Scholar 

  28. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    PubMed  CAS  Google Scholar 

  29. Dame Carroll JR, Chandra A, Jones AS et al (2006) Airway dimensions measured from micro-computed tomography and high-resolution computed tomography. Eur Respir J 28:712–720

    Article  PubMed  CAS  Google Scholar 

  30. Carroll N, Elliot J, Morton A, James A (1993) The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis 147:405–410

    PubMed  CAS  Google Scholar 

  31. Reinhardt JM, D’Souza ND, Hoffman EA (1997) Accurate measurement of intrathoracic airways. IEEE Trans Med Imaging 16:820–827

    Article  PubMed  CAS  Google Scholar 

  32. Nakano Y, Whittall KP, Kalloger SE et al (2002) Development and validation of human airway analysis algorithm using multidetector row CT. Proc Int Soc Optic Eng (SPIE) 4683:460–469

    Google Scholar 

  33. Brown RH, Mitzner W (2003) Understanding airway pathophysiology with computed tomography. J Appl Physiol 95:854–862

    PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. M.-H. Becquemin and Prof. M. Zelter for their contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Yves Brillet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brillet, PY., Fetita, C.I., Capderou, A. et al. Variability of bronchial measurements obtained by sequential CT using two computer-based methods. Eur Radiol 19, 1139–1147 (2009). https://doi.org/10.1007/s00330-008-1247-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-1247-8

Keywords

Navigation