Skip to main content
Log in

Antarctic bioprospecting: in pursuit of microorganisms producing new antimicrobials and enzymes

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Intensive efforts are being made to find new compounds with antimicrobial activity. The search for these novel bio-products in sparsely explored environments may be the key to providing solutions for many emerging problems. Antarctic environments are valuable locations for bioprospecting. In this study, 63 cold-adapted bacterial strains of 6100 different colony morphotypes were isolated from Antarctic seawater samples around South Shetland and Deception islands. Strains were selected based on cold-active antimicrobial production and were grouped into 11 operational taxonomic units by internal spacer region-PCR and amplified ribosomal DNA restriction analysis. Isolates arbitrarily named 2D, 5D, and 6D were closely related to Halomonas titanicae, with 99.8, 98.9, and 96.7% identity according to 16S rDNA sequencing, and 99.7, 99.3, and 98.3% according to gyrB region sequence analysis, respectively. The isolate 18SH was closely related to Candida sake (99.2%) based on sequence analysis of the ITS1–5.8S rDNA–ITS2 and D1/D2 domain of 26S rDNA. Antimicrobials produced by isolates 2D, 5D, and 6D exhibited a low-molecular weight (< 6000 Da) and stability in wide pH and temperature ranges. When tested against foodborne and phytopathogenic bacteria, selected isolates exhibited a wide spectrum of activity. This work reports the isolation and identification of cold-adapted microorganisms with the ability to produce antimicrobial compounds with potential application in the pharmaceutical or in cold-chain management in the food industry. The current results highlight the potential of the Antarctic environment as a valuable and underexploited source of new antimicrobial molecules with exceptional properties for different biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves MJ, Ferreira IC, Dias J, Teixeir V, Martins A, Pintado M (2012) A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Med 78:1707–1718

    Article  PubMed  CAS  Google Scholar 

  • Arnau GV, Sánchez LA, Delgado OD (2015) Pseudomonas yamanorum sp. nov., a psychrotolerant bacterium isolated from a subantarctic environment. Int J Syst Evol Microbiol 65:424–431

    Article  PubMed  CAS  Google Scholar 

  • Arnau GV, Danilovich ME, Sánchez LA, Acosta F, Delgado O (2016) Novel sources of antimicrobials from pristine and poorly explored environments. The patagonia microbiota case. In: Olivera N, Libkind D, Donati E (eds) Biology and biotechnology of patagonian microorganisms. Springer, Cham, pp 127–146

    Chapter  Google Scholar 

  • Asensio C, Perez-Diaz JC, Martinez MC, Baquero F (1976) A new family of low molecular weight antibiotics from enterobacteria. Biochem Biophys Res Commun 69:7–14

    Article  PubMed  CAS  Google Scholar 

  • Azemin A, Klappa P, Omar MSS (2015) Bacteriocin isolated from Halomonas sp.: a bacterial ding protein? Malays J Anal Sci 19:831–840

    Google Scholar 

  • Bajaj BK, Raina S, Singh S (2012) Killer toxin from a novel killer yeast Pichia kudriavzevii RY55 with idiosyncratic antibacterial activity. J Basic Microbiol 53:645–656

    Article  PubMed  CAS  Google Scholar 

  • Banat IM (1993) The isolation of a thermophilic biosurfactant producing Bacillus sp. Biotechnol Lett 15:591–594

    Article  CAS  Google Scholar 

  • Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Comp Rev Food Sci Food Saf 3:1–20

    Article  CAS  Google Scholar 

  • Bitzer J, Grosse T, Wang L, Lang S, Beil W, Zeeck A (2006) New aminophenoxazinones from a marine Halomonas sp: fermentation, structure elucidation, and biological activity. J Antibiot 59:86–92

    Article  CAS  Google Scholar 

  • Bosch MP, Robert M, Mercade ME, Espuny MJ, Parr JL, Guinea J (1988) Surface-active compounds on microbial cultures. Tenside Surfactants Deterg 25:208–211

    Google Scholar 

  • Bourbouli M, Katsifas EA, Papathanassiou E, Karagouni AD (2015) The Kolumbo submarine volcano of Santorini Island is a large pool of bacterial strains with antimicrobial activity. Arch Microbiol 197:539–552

    Article  PubMed  CAS  Google Scholar 

  • Brizzio S, Turchetti B, De Garcia V, Libkind D, Buzzini P, Van Broock M (2007) Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525

    Article  PubMed  CAS  Google Scholar 

  • Carrión O, Miñana-Galbis D, Montes MJ, Mercadé E (2011) Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the antarctic. Int J Syst Evol Microbiol 61:2401–2405

    Article  PubMed  CAS  Google Scholar 

  • Chávez R, Fierro F, García-Rico RO, Vaca I (2015) Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Front Microbiol 6:903

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen WB, Han YF, Jong SC, Chang SC (2000) Isolation, purification, and characterization of a killer protein from Schwanniomyces occidentalis. Appl Environ Microbiol 66:5348–5352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Wang G, Bu T, Zhang Y, Wang Y, Liu M, Lin X (2009) Phylogenetic analysis and screening of antimicrobial and cytotoxic activities of moderately halophilic bacteria isolated from the Weihai Solar Saltern (China). World J Microbiol Biotechnol 26:879–888

    Article  Google Scholar 

  • Cooper LZ, Madoff MA, Weinstein L (1964) Hemolysis of rabbit erythrocytes by purified Staphylococcal alpha-toxin I. Kinetics of the lytic reaction. J Bacteriol 87:127–135

    PubMed  PubMed Central  CAS  Google Scholar 

  • Coventry MJ, Gordon JB, Wilcock A, Harmark K, Davidson BE, Hickey MW, Hiller AJ, Wan J (1997) Detection of bacteriocins of lactic acid bacteria isolated from foods and comparison with pediocin and nisin. J Appl Microbiol 83:248–258

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Reeves P (1975) Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. J Bacteriol 123:102–117

    PubMed  PubMed Central  CAS  Google Scholar 

  • Davies J, Webb V (1998) Antibiotic resistance in bacteria. In: Krause RM (ed) Emerging infections: biomedical research reports. Academic Press, San Diego

    Google Scholar 

  • Dionisi HM, Lozada M, Olivera NL (2012a) Bioprospection of marine microorganisms: biotechnological applications and methods. Rev Argentina de Microbiol 44:49–60

    CAS  Google Scholar 

  • Dionisi HM, Lozada M, Olivera NL (2012b) Bioprospection of marine microorganisms: potential and challenges for Argentina. Rev Argentina de Microbiol 44:122–132

    Google Scholar 

  • Dobson SJ, Franzmann P (1996) Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Evol Microbiol 46:550–558

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    Article  PubMed  CAS  Google Scholar 

  • Franzmann PD, Wehmeyer U, Stackebrandt E (1988) Halomonadaceae fam. nov, a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 11:16–19

    Article  Google Scholar 

  • Fredericq P (1948) Actions antibiotiques réciproques chez les Enterobacteriaceae. Rev Belge Pathol Med Exp 19:1–107

    Google Scholar 

  • Fukushima M, Kakinuma K, Kawaguchi R (2002) Phylogenetic analysis of Salmonella, Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence. J Clin Microbiol 40:2779–2785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gratia A (1946) Techneues sélectives pour la recherché systématique des germes antibiotiques. Comptes Rendus des Séances et Mémoires de la Société de Biologie 140:1053–1055

    CAS  Google Scholar 

  • Grossart HP, Kiørboe T, Tang K, Ploug H (2003) Bacterial colonization of particles: growth and interactions. Appl Environ Microbiol 69:3500–3509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamid B, Benazir BI (2015) Cold-active α-amylase from psychrophilic and psychrotolerant yeast. J Glob Biosci 4:2670–2677

    Google Scholar 

  • Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi K (1995) Discovering novel bacteria, with an eye to biotechnological applications. Curr Opin Biotechnol 6:292–297

    Article  CAS  Google Scholar 

  • Iqbal S, Khalid ZM, Malik KA (1995) Enhanced biodegradation and emulsification of crude oil and hyperproduction of biosurfactants by a gamma ray-induced mutant of Pseudomonas aeruginosa. Lett Appl Microbiol 21:176–179

    Article  PubMed  CAS  Google Scholar 

  • Jain DK, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening biosurfactant-producing microorganisms. J Microbiol Methods 13:271–279

    Article  Google Scholar 

  • Jensen MA, Webster JA, Straus N (1993) Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA polymorphism. Appl Environ Microbiol 59:945–952

    PubMed  PubMed Central  CAS  Google Scholar 

  • Karchmer AW (2004) Increased antibiotic resistance in respiratory tract pathogens: PROTEKT US-an update. Clin Infect Dis 39:142–150

    Article  Google Scholar 

  • Kaye JZ, Márquez MC, Ventosa A, Baross JA (2004) Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54:499–511

    Article  PubMed  CAS  Google Scholar 

  • Kazunori H, Tadashi N, Kasai H (2003) Taxonomic re-evaluation of whorl-forming Streptomyces (formerly Streptoverticillium) species by using phenotypes, DNA–DNA hybridization and sequences of gyrB, and proposal of Streptomyces luteireticuli (ex Katoh and Arai 1957) corrig., sp. nov., nom. rev. Int J Syst Evol Microbiol 53:1519–1529

    Article  CAS  Google Scholar 

  • Kennedy J, Marchesi JR, Dobson AD (2008) Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Fact 7:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Labrenz M, Collins MD, Lawson PA, Tindall BJ, Braker G, Hirsch P (1998) Antarctobacter heliothermus gen. nov, sp. nov, a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Evol Microbiol 48:1363–1372

    CAS  Google Scholar 

  • Liu JT, Lu XL, Liu XY, Gao Y, Hu B, Jiao BH, Zheng H (2013) Bioactive natural products from the Antarctic and Arctic organisms. Mini Rev Med Chem 13:17–626

    Google Scholar 

  • Lo Giudice A, Bruni V, Michaud L (2007) Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J Basic Microbiol 47:496–505

    Article  PubMed  CAS  Google Scholar 

  • Lodato EM, Kaplan W (2013). Background Paper 6.1 Antimicrobial resistance. World Health Organization, Geneva

  • Logan NA, Berkeley CW (1984) Identification of Bacillus strains using the API system. J Gen Microbiol 130:1871–1882

    PubMed  CAS  Google Scholar 

  • Loperena L (2012) Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 28:2249–2256

    Article  PubMed  CAS  Google Scholar 

  • Maidak BL, Cole JR, Lilbur TG (2000) The RDP (Ribosomal Data Project) continues. Nucleic Acids Res 28:173–174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malik S, Beer M, Megharaj M, Naidu R (2008) The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ Int 34:265–276

    Article  PubMed  CAS  Google Scholar 

  • Mandal A, Yadav K, Sen I, Kumar A, Chakraborti S, Islam S, Chakraborty R (2013) Partial characterization and flocculating behavior of an exopolysaccharide produced in nutrient-poor medium by a facultative oligotroph Klebsiella sp. PB12. J Biosci Bioeng 115:76–81

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31:835–844

    Article  PubMed  CAS  Google Scholar 

  • Marquina D, Barroso J, Santos A, Peinado JM (2001) Production and characteristics of Debaryomyces hansenii killer toxin. Microbiol Res 156:387–389

    Article  PubMed  CAS  Google Scholar 

  • Mayr-Harting A, Hedges AJ, Berkeley CW (1972) Methods for studying bacteriocins. In: Norris JR, Ribbons D (eds) Methods in microbiology, vol 7A. Academic Press, New York, pp 315–412

    Google Scholar 

  • Morán AC, Olivera N, Commendatore J, Esteves JL, Siñeriz F (2000) Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis O9. Biodegradation 11:65–71

    Article  PubMed  Google Scholar 

  • Morán AC, Martinez AM, Siñeriz F (2002) Quantification of surfactin in culture supernatants by haemolytic activity. Biotechnol Lett 24:177–180

    Article  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural Products as Sources of New Drugs over the Last 25 Years. J Nat Prod 70:461–477

    Article  PubMed  CAS  Google Scholar 

  • O’Brien A, Sharp R, Russell N, Roller S (2004) Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol Ecol 48:157–167

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–233

    Google Scholar 

  • Ohta Y, Tsukada Y, Sugimori T (1984) Production, purification and characterisation of HYI, an antiyeast substance, produced by Hansenula saturnus. Agric Biol Chem 48:903–908

    CAS  Google Scholar 

  • Paterson DL (2006) The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis 43:S43–S48

    Article  PubMed  Google Scholar 

  • Pavlova OA, Severinov KV (2006) Posttranslationally modified microcins. Genetika 42:1636–1646

    PubMed  CAS  Google Scholar 

  • Pearce DA, Newsham KK, Thorne MAS, Calvo-Bado L, Krsek M, Laskaris P, Hodson A, Wellington EM (2012) Metagenomic analysis of a southern maritime Antarctic soil. Front Microbio 3:403

    Article  Google Scholar 

  • Poli A, Esposito E, Orlando P, Lama L, Giordano A, De Appolonia F, Nicolaus B, Gambacorta A (2007) Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Syst Appl Microbiol 30:31–38

    Article  PubMed  CAS  Google Scholar 

  • Polonelli L, Archibusacci C, Sestito M, Morace G (1983) Killer system: a simple method for differentiating Candida albicans strains. J Clin Microbiol 17:774–780

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pons AM, Lanneluc I, Cottenceau G, Sable S (2002) New developments in non-post translationally modified microcins. Biochimie 84:531–537

    Article  PubMed  CAS  Google Scholar 

  • Portrait V, Gendron-Gaillard S, Cottenceau G, Pons AM (1999) Inhibition of pathogenic Salmonella enteritidis growth mediated by Escherichia coli microcin J25 producing strains. Can J Microbiol 45:988–994

    Article  PubMed  CAS  Google Scholar 

  • Radjasa OK, Kencana DS, Sabdono A, Hutagalung RA, Lestari ES (2007) Antibacterial activity of marine bacteria associated with sponge Aaptos sp. against multi drugs resistant (MDR) strains. J Matematika dan Sains 12:147–152

    Google Scholar 

  • Ravikumar S, Uma G, Gokulakrishnan R (2016) Antibacterial property of halobacterial carotenoids against human bacterial pathogens. J Sci Ind Res 75:253–257

    CAS  Google Scholar 

  • Ravot G, Masson JM, Lefèvre F (2006) 34 applications of extremophiles: the industrial screening of extremophiles for valuable biomolecules. Methods Microbiol 35:785–813

    Article  CAS  Google Scholar 

  • Reddy SC, Jacob JT, Varkey JB, Gaynes RP (2015) Antibiotic use in US hospitals: quantification, quality measures and stewardship. Expert Rev Anti Infect Ther 13:843–854

    Article  PubMed  CAS  Google Scholar 

  • Reed PA (2004) Bioprospecting. The technology teacher 64:14–19

    Google Scholar 

  • Reynolds R, Potz N, Colman M, Williams A, Livermore D, MacGowan A (2004) Antimicrobial susceptibility of the pathogens of bacteraemia in the UK and Ireland 2001-2002: the BSAC Bacteraemia Resistance Surveillance Programme. J Antimicrob Chemother 53:1018–1032

    Article  PubMed  CAS  Google Scholar 

  • Rojas JL, Martín J, Tormo JR, Vicente F, Brunati M, Ciciliato I, Losib D, Van Trappenc S, Mergaertc J, Swingsc J, Marinellid F, Genilloud O (2009) Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Mar Genom 2:33–41

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sánchez LA, Gómez FF, Delgado OD (2009) Cold-adapted microorganisms as a source of new antimicrobials. Extremophiles 13:111–120

    Article  PubMed  CAS  Google Scholar 

  • Sánchez LA, Hedström M, Delgado MA, Delgado OD (2010) Production, purification and characterization of serraticin A, a novel cold-active antimicrobial produced by Serratia proteamaculans 136. J Appl Microbiol 109:936–945

    Article  PubMed  CAS  Google Scholar 

  • Sánchez LA, Sierra MG, Siñeriz F, Delgado OD (2013) Andrimid production at low temperature by a psychrotolerant Serratia proteamaculans strain. World J Microbiol Biotechnol 29:1773–1781

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Porro C, Kaur B, Mann H, Ventosa A (2010) Halomonas titanicae sp. nov, a halophilic bacterium isolated from the RMS Titanic. Int J Syst Evol Microbiol 60:2768–2774

    Article  PubMed  CAS  Google Scholar 

  • Singh SB, Barrett JF (2006) Empirical antibacterial drug discovery-foundation in natural products. Biochem Pharmacol 71:1006–1015

    Article  PubMed  CAS  Google Scholar 

  • Spížek J, Novotna J, Rezanka T, Demain AL (2010) Do we need new antibiotics? The search for new targets and new compounds. J Ind Microbiol Biotechnol 37:1241–1248

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Teixeira LC, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. The ISME J 4:989–1001

    Article  PubMed  Google Scholar 

  • Tomova I, Stoilova-Disheva M, Lazarkevich I, Vasileva-Tonkova E (2015) Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Front Life Sci 8(4):348–357

    Article  CAS  Google Scholar 

  • Vollú RE, Jurelevicius D, Ramos LR, Peixoto RS, Rosado AS, Seldin L (2014) Aerobic endospore-forming bacteria isolated from Antarctic soils as producers of bioactive compounds of industrial interest. Polar Biol 37:1121–1131

    Article  Google Scholar 

  • Wenzel RP (2004) The antibiotic pipeline challenges, costs, and values. N Engl J Med 351:523–526

    Article  PubMed  CAS  Google Scholar 

  • White TJ, Bruns T, Lee SJWT, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis N, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic Press Inc, New York, pp 315–322

    Google Scholar 

  • White LP, Wynn-William DD, Russell NJ (2000) Diversity of thermal responses of lipid composition in the membranes of the dominant culturable members of an Antarctic fellfield soil bacterial community. Antarct Sci 12:386–393

    Article  Google Scholar 

  • Willems A, Coopman R, Gillis M (2001) Comparison of sequence analysis of 16S-23S rDNA spacer regions, AFLP analysis and DNA-DNA hybridizations in Bradyrhizobium. Int J Syst Evol Microbiol 51:623–632

    Article  PubMed  CAS  Google Scholar 

  • Wong C, Tam H, Alias S, González M, González-Rocha G, Domínguez-Yévenes M (2011) Pseudomonas and Pedobacter isolates from King George Island inhibited the growth of foodborne pathogens. Pol Polar Res 32:3–14

    Article  Google Scholar 

  • Wratschko K (2009) Empirical setting: the pharmaceutical industry. Strategic orientation and alliance portfolio configuration. Gabler, Wissenchaft, pp 87–96

    Chapter  Google Scholar 

  • Yamamoto T, Uchida K, Hiratani T, Miyazaki T, Yagiu J, Yamaguchi H (1988) In vitro activity of the killer toxin from yeast Hansenula mrakii against yeasts and molds. J Antibiot 41:398–403

    Article  CAS  Google Scholar 

  • Zaccai G, Bagyan I, Combet J, Cuello GJ, Demé B, Fichou Y, Gallat FX, Galvan Josa VM, von Gronau S, Haertlein M, Martel A, Moulin M, Neumann M, Weik M, Oesterhelt D (2016) Neutrons describe ectoine effects on water H-bonding and hydration around a soluble protein and a cell membrane. Sci Rep 6:31343

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Instituto Antártico Argentino (IAA) for permitting us to work aboard the oceanographic ship Puerto Deseado—CONICET and all the crew for their help and assistance. We also thank Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Daniel Delgado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilovich, M.E., Sánchez, L.A., Acosta, F. et al. Antarctic bioprospecting: in pursuit of microorganisms producing new antimicrobials and enzymes. Polar Biol 41, 1417–1433 (2018). https://doi.org/10.1007/s00300-018-2295-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2295-4

Keywords

Navigation