Skip to main content
Log in

Overexpression of a harpin-encoding gene popW from Ralstonia solanacearum primed antioxidant defenses with enhanced drought tolerance in tobacco plants

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The tobacco plants transformed with popW gene showed enhanced drought tolerance, and the mechanism was found with primed antioxidant defenses and reduced drought stress damages in the transgenic lines.

Abstract

Harpin proteins are elicitors produced by several gram-negative plant pathogenic bacteria, triggering multiple beneficial responses in plants, such as induction of defense response against diverse pathogens and insects, growth promotion, and drought tolerance. In this study, the harpin-encoding gene popW derived from Ralstonia solanacearum ZJ3721 was transferred to tobacco. We examined the tolerance of transgenic tobacco plants toward drought stress under greenhouse conditions and analyzed the molecular mechanisms underlying the enhanced drought tolerance. The results revealed that the transgenic lines primed antioxidant defenses and reduced drought stress damages. In addition, they displayed lower malondialdehyde and relative electrical conductivity, while higher relative water content and recovery intension than the tobacco plants transformed with empty vector pBI121 and the wild-type (WT) plants under drought stress. Furthermore, the transgenic lines displayed a significant increase in peroxidase, superoxide dismutase, catalase activities, and ascorbic acid content compared with control plants under drought stress, and these levels were up to 1.95, 1.68, 1.34, and 1.43 times higher than those of WT plants, respectively. Overexpression of popW in tobacco also significantly enhanced the relative transcript levels of oxidative stress-responsive genes NtAPX, NtCAT1, NtGST, and NtCu/Zn-SOD under drought stress. The relative transcript levels of these genes in the transgenic line PW12 were up to 1.94, 2.36, 5.24, and 3.62 times higher than those of WT plants, respectively. These results confirmed that the popW gene, which was transformed into tobacco primed antioxidant responses, increased tolerance to drought stress in tobacco plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen R (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants. Physiol Plant 85(2):235–241

    Article  CAS  Google Scholar 

  • Ashraf M, Iram A (2005) Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora 200(6):535–546

    Article  Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R et al (2004) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121:231–238

    Article  CAS  PubMed  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A reexamination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Bayr H (2005) Reactive oxygen species. Crit Care Med 33(12):498–501

    Article  Google Scholar 

  • Dobrá J, Vanková R, Havlová M et al (2011) Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery.[J]. J Plant Physiol 168(13):1588–1597

    Article  PubMed  Google Scholar 

  • Dong H, Delaney TP, Beer SV (1999) Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J 20(2):207–215

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Peng J, Bao Z, Meng X, Bonasera JM et al (2004) Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol 136(3):3628–3638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong HP, Yu H, Bao Z, Guo X, Peng J et al (2005) The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221:313–327

    Article  CAS  PubMed  Google Scholar 

  • Glombitza S, Dubuis PH, Thulke O, Welzl G, Bovet L et al (2004) Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism. Plant Mol Biol 54(6):817–835

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Huang C, Deng XM, Zhou SY, Chen LH et al (2013) TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. Plant Cell Environ 36:1449–1464

    Article  CAS  PubMed  Google Scholar 

  • Huo R, Wang Y, Ma LL, Qiao JQ, Shao M et al (2010) Assessment of inheritance pattern and agronomic performance of transgenic rapeseed having harpinXooc-encoding hrf2 gene. Transgenic Res 19:841–847

    Article  CAS  PubMed  Google Scholar 

  • Jang YS, Sohn SI, Wang MH (2006) The hrpN gene of Erwinia amylovora stimulates tobacco growth and enhances resistance to Botrytis cinerea. Planta 223:449–456

    Article  CAS  PubMed  Google Scholar 

  • Kampfenkel K, Vanmontagu M, Inze D (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem 225(1):165–167

    Article  CAS  PubMed  Google Scholar 

  • Li M, Shao M, Lu XZ, Wang JS (2005) Biological activities of purified HarpinXoo and HarpinXoo detection in transgenic plants using its polyclonal antibody. Acta Biochimica et Biophysica Sinic 37(10):713–718

    Article  CAS  Google Scholar 

  • Li JG, Liu HX, Cao J, Chen LF, Gu C et al (2010) PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall. Mol Plant Pathol 11(3):371–381

    Article  CAS  PubMed  Google Scholar 

  • Li JG, Cao J, Sun FF, Niu DD, Yan F et al (2011) Control of Tobacco mosaic virus by PopW as a result of induced resistance in tobacco under greenhouse and field conditions. Phytopathology 101(10):1202–1208

    Article  CAS  PubMed  Google Scholar 

  • Liu XF, Li JY (2002) Characterization of an ultra-violet inducible gene that encodes glutathione S-transferase in Arabidopsis thaliana. Acta Genet Sinica 29:458–460

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lü B, Sun W, Zhang S, Zhang C, Qian J et al (2011) HrpNEa-induced deterrent effect on phloem feeding of the green peach aphid Myzus persicae requires AtGSL5 and AtMYB44 genes in Arabidopsis thaliana. J Biosci 36(1):123–137

    Article  PubMed  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Mol Biol 47:127–158

    Article  CAS  Google Scholar 

  • Miao W, Wang X, Song C, Wang Y, Ren Y et al (2010) Transcriptome analysis of Hpa1Xoo transformed cotton revealed constitutive expression of genes in multiple signalling pathways related to disease resistance. J Exp Bot 61(15):4263–4275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 9:405–410

    Article  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) The reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Qiu ZB, Liu X, Tian XJ, Yue M (2007) Effects of CO2 laser pretreatment on drought stress resistance in wheat. J Photochem Photobiol B: Biol 90(1):17–25

    Article  Google Scholar 

  • Rai GK, Rai NP, Rathaur S, Kumar S, Singh M (2013) Expression of rd29A:AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants. Plant Physiol Biochem 69:90–100

    Article  CAS  PubMed  Google Scholar 

  • Shao M, Xiao SS, Li L, Huang WC, Wang JS (2008) Expressing hrf1 gene in rice exhibits stable nonspecific resistance to Magnaporthe grisea. Chin J Rice Sci 22(5):459–464

    CAS  Google Scholar 

  • Silva ECD, Albuquerque MBD (2013) Drought and its consequences to plants-from individual to ecosystem. Intech, Rijeka, pp 17–47

    Google Scholar 

  • Sui N, Li M, Zhao SJ, Li F, Liang H et al (2008) Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta 226(5):1097–1108

    Article  Google Scholar 

  • Sun WH, Duan M, Shu DF, Yang S, Meng QW (2010) Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses. Plant Cell Rep 29:917–926

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Wang Y, Hei H, Li X, Song W et al (2013) Reduction of methyl viologen-mediated oxidative stress tolerance in antisense transgenic tobacco seedlings through restricted expression of StAPX. J Zhejiang Univ Sci B 14(7):578–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GY, Liu DQ, Ge F, Fang SG, Tian RH et al (2010) The Role of GSTs in abiotic stress resistance in plants. Plant Physiol Commun 9:890–894

    Google Scholar 

  • Wang CJ, Yang W, Wang C, Gu C, Niu DD et al (2012a) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7(12):e52565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LY, Wang Y, Meng X, Meng QW (2012b) Overexpression of tomato GDP-L-galactose phosphorylase gene enhanced tolerance of transgenic tobacco to methyl viologen-mediated oxidative stress. Plant Physiol J 48(7):689–698

    CAS  Google Scholar 

  • Wang C, Cao J, Wang TT, Zheng L, Wang C et al (2014a) Effect of PopW from Ralstonia solanacearum on inducing plants disease resistance. Chin J Bio Control 30(1):79–85

    Google Scholar 

  • Wang C, Liu HX, Cao J, Wang C, Guo JH (2014b) Construction of transgenic tobacco expressing popW and analysis of its biological phenotype. Chin J Biotechnol 30(4):1–12

    Article  Google Scholar 

  • Wang L, Liu Y, Cai G, Jiang S, Pan J et al (2014c) Ectopic expression of ZmSIMK1 leads to improved drought tolerance and activation of systematic acquired resistance in transgenic tobacco. J Biotechnol 172:18–29

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Wu T, Long J, Yin Q, Zhang Y et al (2007) Productivity and biochemical properties of green tea in response to full-length and functional fragments of HpaGXooc, a harpin protein from the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola. J Biosci 32(6):1119–1131

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Wang LJ, Zhang B, Han B, Xie YJ et al (2012) RNAi knockdown of rice SE5 gene is sensitive to the herbicide methyl viologen by the down-regulation of antioxidant defense. Plant Mol Biol 80(2):219

    Article  CAS  PubMed  Google Scholar 

  • Yu T, Li YS, Chen XF, Hu J, Chang X et al (2003) Transgenic tobacco plants overexpressing cotton glutathione S-transferase (GST) show enhanced resistance to methyl viologen. J Plant Physiol 160:1305–1311

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Qian J, Bao Z, Hong X, Dong H (2007) The induction of abscisic-acid-mediated drought tolerance is independent of ethylene signaling in Arabidopsis plants responding to a harpin protein. Plant Mol Biol Rep 25:98–114

    Article  Google Scholar 

  • Zhang L, Xiao S, Li W, Feng W, Li J et al (2011) Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance. J Exp Bot 62(12):4229–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Luo YM, Xue QY, Li SM, Liu HX et al (2013) Control and growth promotion of PopW to cucumber downy mildew under greenhouse and field conditions. Acat Phytopathol Sinica 43(2):179–186

    Google Scholar 

  • Zhou S, Hu W, Deng X, Ma Z, Chen L et al (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS One 7:e52439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31571992, 31371925), and Projects of Application and Technology Research (Agriculture) of Huaian (HAN2014019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by X. S. Zhang.

H. Liu and Y. Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2016_1965_MOESM1_ESM.jpg

Supplementary material 1 (JPEG 135 kb) Supplemental Figure S1. Northern blotting analysis of transgenic lines. Total RNAs were isolated from wild-type (WT) and independent T2 transgenic lines PW12, PW14, PW52, PW16-1, PW21-3, PW29-1, PW32-1, and PW56-3. Total RNAs (10 mg) were separated on an agarose gel and then transferred to a nylon membrane and hybridized with PopW probe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, Y., Zhou, X. et al. Overexpression of a harpin-encoding gene popW from Ralstonia solanacearum primed antioxidant defenses with enhanced drought tolerance in tobacco plants. Plant Cell Rep 35, 1333–1344 (2016). https://doi.org/10.1007/s00299-016-1965-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-1965-3

Keywords

Navigation