Skip to main content
Log in

Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The IPyA pathway, the major auxin biosynthesis pathway, is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels.

Abstract

The phytohormone auxin plays an important role in plant growth and development, and levels of active free auxin are determined by biosynthesis, conjugation, and polar transport. Unlike conjugation and polar transport, little is known regarding the regulatory mechanism of auxin biosynthesis. We discovered that expression of genes encoding indole-3-pyruvic acid (IPyA) pathway enzymes is regulated by elevated or reduced active auxin levels. Expression levels of TAR2, YUC1, YUC2, YUC4, and YUC6 were downregulated in response to synthetic auxins [1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D)] exogenously applied to Arabidopsis thaliana L. seedlings. Concomitantly, reduced levels of endogenous indole-3-acetic acid (IAA) were observed. Alternatively, expression of these YUCCA genes was upregulated by the auxin biosynthetic inhibitor kynurenine in Arabidopsis seedlings, accompanied by reduced IAA levels. These results indicate that expression of YUCCA genes is regulated by active auxin levels. Similar results were also observed in auxin-overproduction and auxin-deficient mutants. Exogenous application of IPyA to Arabidopsis seedlings preincubated with kynurenine increased endogenous IAA levels, while preincubation with 2,4-D reduced endogenous IAA levels compared to seedlings exposed only to IPyA. These results suggest that in vivo conversion of IPyA to IAA was enhanced under reduced auxin levels, while IPyA to IAA conversion was depressed in the presence of excess auxin. Based on these results, we propose that the IPyA pathway is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abel S, Nguyen MD, Theologis A (1995) The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J Mol Biol 251:533–549

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Cervera M-T, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Onckelen HV, Montagu MV, Inzé D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brandt R, Salla-Martret M, Bou-Torrent J, Musielak T, Stahl M, Lanz C, Ott F, Schmid M, Greb T, Schwarz M, Choi S-B, Barton MK, Reinhart BJ, Liu T, Quint M, Palauqui J-C, Martínez-Gracía JF, Wenkel S (2012) Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses. Plant J 72:31–42

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cohen JD, Bandurski RS (1982) Chemistry and physiology of the bound auxins. Annu Rev Plant Physiol 33:403–430

    Article  CAS  Google Scholar 

  • Dai X, Mashiguchi K, Chen Q, Kasahara H, Kamiya Y, Ojha S, DuBois J, Ballou D, Zhao Y (2013) The biochemical mechanism of auxin biosynthesis by an Arabidopsis YUCCA flavin-containing monooxygenase. J Biol Chem 288:1448–1457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song KM, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  CAS  PubMed  Google Scholar 

  • Eklund DM, Ståldal V, Valsecchi I, Cierlik I, Eriksson C, Hiratsu K, Ohme-Takagi M, Sundström JF, Thelander M, Ezcurra I, Sundberg E (2010) The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell 22:349–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108:20231–20235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130:1319–1334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi K, Neve J, Hirose M, Kuboki A, Shimada Y, Kepinski S, Nozaki H (2012) Rational design of an auxin antagonist of the SCFTIR1 auxin receptor complex. ACS Chem Biol 7:590–598

    Article  CAS  PubMed  Google Scholar 

  • He W, Brumos J, Li H, Ji Y, Ke M, Gong X, Zeng Q, Li W, Zhang X, An F, Wen X, Li P, Chu J, Sun X, Yan C, Yan N, Xie D-Y, Raikhel N, Yang Z, Stepanova AN, Alonso JM, Guo H (2011) A small-molecule screen identifies l-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23:3944–3960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hentrich M, Böttcher C, Düchting P, Cheng Y, Zhao Y, Berkowitz O, Masle J, Medina J, Pollmann S (2013) The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J 74:626–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Higashide T, Narukawa M, Shimada Y, Soeno K (2014) Suppression of elongation and growth of tomato seedlings by auxin biosynthesis inhibitors and modeling of the growth and environmental response. Sci Rep 4:4556

    Article  PubMed  Google Scholar 

  • Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K, López-Vidriero I, Franco-Zorrilla JM, Solano R, Trevisan M, Pradervand S, Xenarios I, Fankhauser C (2012) Phytochrome interacting fators 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J 71:699–711

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Hayashi K, Soeno K, Asami T, Nakamura S, Suzuki M, Nakamura A, Shimada Y (2014) Analysis of a putative auxin biosynthesis inhibitor, indole-3-oxoethylphosphonic acid, in Arabidopsis. Biosci Biotechnol Biochem 78:67–70

    Article  CAS  PubMed  Google Scholar 

  • Ishihara A, Hashimoto Y, Tanaka C, Dubouzet JG, Nakao T, Matsuda F, Nishioka T, Miyagawa H, Wakasa K (2008) The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J 54:481–495

    Article  CAS  PubMed  Google Scholar 

  • Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64:2541–2555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kriechbaumer V, Wang P, Hawes C, Abell BM (2012) Alternative splicing of the auxin biosynthesis gene YUCCA4 determines its subcellular compartmentation. Plant J 70:292–302

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Jung J-H, Han D-Y, Seo PJ, Park WJ, Park C-M (2012) Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta 235:923–938

    Article  CAS  PubMed  Google Scholar 

  • Lehmann T, Hoffmann M, Hentrich M, Pollmann S (2010) Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production? Eur J Cell Biol 89:895–905

    Article  CAS  PubMed  Google Scholar 

  • Li L-C, Qin G-J, Tsuge T, Hou X-H, Ding M-Y, Aoyama T, Oka A, Chen Z, Gu H, Zhao Y, Qu L-J (2008) SPOROCYTELESS modulates YUCCA expression to regulate the development of lateral organs in Arabidopsis. New Phytol 179:751–764

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, Ivans LJ, Pedmale UV, Jung H-S, Ecker JR, Kay SA, Chory J (2012) Linking photoreceptor excitation to changes in plant architecture. Genes Dev 26:785–790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT methods. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 50:309–332

    Article  Google Scholar 

  • Ludwig-Müller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773

    Article  PubMed  Google Scholar 

  • Ma Q, Robert S (2014) Auxin biology revealed by small molecules. Physiol Plant 151:25–42

    Article  CAS  PubMed  Google Scholar 

  • Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63:2853–2872

    Article  CAS  PubMed  Google Scholar 

  • Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108:18512–18517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mori Y, Nishimura T, Koshiba T (2005) Vigorous synthesis of indole-3-acetic acid in the apical very tip leads to a constant basipetal flow of the hormone in maize coleoptiles. Plant Sci 168:467–473

    Article  CAS  Google Scholar 

  • Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133:1843–1853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nemoto K, Hara M, Suzuki M, Seki H, Muranaka T, Mano Y (2009) The NtAMI1 gene functions in cell division of tobacco BY-2 cells in the presence of indole-3-acetamide. FEBS Lett 583:487–492

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Hayashi K, Suzuki H, Gyohda A, Takaoka C, Sakaguchi Y, Matsumoto S, Kasahara H, Sakai T, Kato J, Kamiya Y, Koshiba T (2014) Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J 77:352–366

    Article  CAS  PubMed  Google Scholar 

  • Pacheco-Villalobos D, Sankar M, Ljung K, Hardtke CS (2013) Disturbed local auxin homeostasis enhances cellular anisotropy and reveals alternative wiring of auxin-ethylene crosstalk in Brachypodium distachyon seminal roots. PLoS Genet 9:e1003564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pinon V, Prasad K, Grigg SP, Sanchez-Perez GF, Scheres B (2013) Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis. Proc Natl Acad Sci USA 110:1107–1112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pollmann S, Neu D, Weiler EW (2003) Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry 62:293–300

    Article  CAS  PubMed  Google Scholar 

  • Quittenden LJ, Davies NW, Smith JA, Molesworth PP, Tivendale ND, Ross JJ (2009) Auxin biosynthesis in pea: characterization of the tryptamine pathway. Plant Physiol 151:1130–1138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quittenden LJ, McAdam EL, Davies NW, Ross JJ (2014) Evidence that indole-3-acetic acid is not synthesized via the indole-3-acetamide pathway in pea roots. J Plant Growth Regul 33:831–836

    Article  CAS  Google Scholar 

  • Rawat R, Schwartz J, Jones MA, Sairanen I, Cheng Y, Andersson CR, Zhao Y, Ljung K, Harmer SL (2009) REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc Natl Acad Sci USA 106:16883–16888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosquete MR, Barbez E, Kleine-Vehn J (2012) Cellular auxin homeostasis: gatekeeping is housekeeping. Mol Plant 5:772–786

    Article  PubMed  Google Scholar 

  • Soeno K, Goda H, Ishii T, Ogura T, Tachikawa T, Sasaki E, Yoshida S, Fujioka S, Asami T, Shimada Y (2010) Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant Cell Physiol 51:524–536

    Article  CAS  PubMed  Google Scholar 

  • Sohlberg JJ, Myrenås M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E (2006) STY1 regulates auxin homeostasis and affects apical-basal patterning of Arabidopsis gynoecium. Plant J 47:112–123

    Article  CAS  PubMed  Google Scholar 

  • Spiess GM, Hausman A, Yu P, Cohen JD, Rampey RA, Zolman BK (2014) Auxin input pathway distributions are mitigated by changes in auxin biosynthetic gene expression in Arabidopsis. Plant Physiol 165:1092–1104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ståldal V, Cierlik I, Chen S, Landberg K, Baylis T, Myrenås M, Sundström JF, Eklund DM, Ljung K, Sundberg E (2012) The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering. Plant Mol Biol 78:545–559

    Article  PubMed  Google Scholar 

  • Staswick PE (2009) The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol 150:1310–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie D-Y, Dolezal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Article  CAS  PubMed  Google Scholar 

  • Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, Ljung K, Alonso JM (2011) The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 23:3961–3973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, Hsieh T-F, Fischer RL, Goldberg RB, Harada JJ (2008) Arabidopsis LEAFY COTYLEDONE2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci USA 105:3151–3156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, Koshiba T, Zhao Y, Kamiya Y, Kasahara H (2009) Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 106:5430–5435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun J, Qi L, Li Y, Chu J, Li C (2012) PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8:e1002594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tao Y, Ferrer J-L, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • Tivendale ND, Davis NW, Molesworth PP, Davidson SE, Smith JA, Lowe EK, Reid JB, Ross JJ (2010) Reassessing the role of N-hydroxytryptamine in auxin biosynthesis. Plant Physiol 154:1957–1965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tivendale ND, Ross JJ, Cohen JD (2014) The shifting paradigms of auxin biosynthesis. Trends Plant Sci 19:44–51

    Article  CAS  PubMed  Google Scholar 

  • Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y (2011) Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of Arabidopsis and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 108:18518–18523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M (2009) The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 151:168–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y (2014) Auxin biosynthesis. Arabidopsis book 12:e0173

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvment of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Z, Guo Y, Novák O, Dai X, Zhao Y, Ljung K, Noel JP, Chory J (2013) Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1. Nat Chem Biol 9:244–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Emi Ishida for technical assistance and Dr. Shozo Fujioka for helpful discussion. A part of this work was supported by The Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry (to Y. S. and K. S.), and a Grant-in-Aid for Scientific Research (nos. 23580144 and 26506015 to M. S. and no. 25514004 to C. Y.) from the Japan Society for the Promotion of Science. This paper is contribution no. 1015 from the Kihara Institute for Biological Research, Yokohama City University.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihisa Shimada.

Additional information

Communicated by P. P. Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2015_1791_MOESM1_ESM.ppt

Supplementary material 1 (PPT 139 kb) Supplementary Fig. S1. The influence of NAA and 2,4-D on expression of the auxin responsive genes Aux/IAA1 and Aux/IAA19. (a) Scheme of growth conditions and chemical treatments. (b) The relative expression of these genes was analyzed using qRT-PCR in 7-day-old Arabidopsis seedlings treated with synthetic auxins for 3 h. White, gray, and black bars represent the control, 10 μM NAA, and 10 μM 2,4-D treatments, respectively. The transcript levels are presented as values relative to those of the control, defined as 1, after normalization to GAPDH levels. Data represent the mean ± se (n = 3). Statistically significant differences relative to the control are indicated by asterisks (Student’s t test; *P < 0.05)

299_2015_1791_MOESM2_ESM.ppt

Supplementary material 2 (PPT 143 kb) Supplementary Fig. S2. The influence of the auxin-biosynthetic inhibitor kynurenine on expression of the auxin-responsive genes Aux/IAA1 and Aux/IAA19. (a) Scheme of growth conditions and chemical treatments. (b) Relative expression of these genes was analyzed using qRT-PCR in 7-day-old Arabidopsis seedlings treated with 30 μM kynurenine and/or 3 μM IAA for 3 h. White and gray bars represent Aux/IAA1 and Aux/IAA19, respectively. The transcript levels are presented on a log2 scale as values relative to those of the control, defined as 0, after normalization to GAPDH levels. Data represent the mean ± se (n = 3). Statistically significant differences relative to the control are indicated by asterisks (Student’s t-test; *P < 0.05)

299_2015_1791_MOESM3_ESM.ppt

Supplementary material 3 (PPT 144 kb) Supplementary Fig. S3. Gene expression analysis of auxin responsive genes in the in vivo conversion experiment by IPyA feeding. (a) Scheme of growth conditions and chemical treatments. (b) Relative expression of the auxin-responsive genes Aux/IAA1 (white bar) and Aux/IAA19 (gray bar) was analyzed using qRT-PCR in 7-day-old Arabidopsis seedlings. The transcript levels are presented on a log2 scale as values relative to those of the control, defined as 0, after normalization to GAPDH levels. Data represent the mean ± se (n = 3). Statistically significant differences relative to the control are indicated by asterisks (Student’s t-test; *P < 0.05)

299_2015_1791_MOESM4_ESM.ppt

Supplementary material 4 (PPT 1292 kb) Supplementary Fig. S4. Characteristic phenotypes of auxin-deficient and -excess mutants. (a) Morphological phenotypes of 4-day-old seedlings of the wild-type (WT), wei8-1, wei8-1 tar2-1, YUC1ox (left), and 7-day-old seedlings of sur1-3 (right). Bars indicate 1 cm. (b) Relative expression of the auxin responsive genes Aux/IAA1 (white bar) and Aux/IAA19 (gray bar) was analyzed using qRT-PCR in 4-day-old seedlings of the WT, wei8-1, wei8-1 tar2-1, YUC1ox, and 7-day-old seedlings of sur1-3. The transcript levels are presented on a log2 scale as values relative to those of the WT, defined as 0, after normalization to GAPDH levels. Data represent the mean ± se (n = 4). Statistically significant differences relative to the WT are indicated by asterisks (Student’s t-test; *P < 0.05)

299_2015_1791_MOESM5_ESM.ppt

Supplementary material 5 (PPT 153 kb) Supplementary Fig. S5. Characterization of YUC1ox. The expression levels of YUC1 (a) and endogenous IAA levels (b) in YUC1ox grown for 5 days were compared with the wild type (WT). YUC1 expression was analyzed with qRT-PCR, and the endogenous IAA level was analyzed using LC–MS/MS. The transcript levels are presented as values relative to those of the WT, defined as 1, after normalization to GAPDH levels. Data represent the mean ± se (n = 3). Statistically significant differences relative to the WT are indicated by asterisks (Student’s t-test; *P < 0.05, # P < 0.1)

299_2015_1791_MOESM6_ESM.ppt

Supplementary material 6 (PPT 379 kb) Supplementary Table S1. Primers and TaqMan probes used for qRT-PCR or for cDNA amplification to generate YUC1ox

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, M., Yamazaki, C., Mitsui, M. et al. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis . Plant Cell Rep 34, 1343–1352 (2015). https://doi.org/10.1007/s00299-015-1791-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1791-z

Keywords

Navigation