Skip to main content
Log in

The physiology of ex vitro pineapple (Ananas comosus L. Merr. var MD-2) as CAM or C3 is regulated by the environmental conditions: proteomic and transcriptomic profiles

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Proteomic and transcriptomic profiles of key enzymes were monitored in pineapple plants propagated under C3 and CAM-inducing metabolisms to obtain insight into the CAM-facultative metabolism and the relationship of CAM plants with oxidative stress.

Abstract

Pineapple is one of the most important tropical crops worldwide. The use of temporary immersion bioreactors for the first stages of pineapple propagation enables precise control of plant growth, increases the rate of plant multiplication, decreases space, energy and labor requirements for pineapple plants in commercial micropropagation. Once the plantlets are ready to be taken from the reactors, they are carefully acclimatized to natural environmental conditions, and a facultative C3/CAM metabolism in the first 2 months of growth is the characteristic of pineapple plants, depending on environmental conditions. We subjected two sets of micropropagated pineapple plants to C3 and CAM-inducing environmental conditions, determined by light intensity/relative humidity (respectively 40 μmol m−2 s−1/85 % and 260 μmol m−2 s−1/50 %). Leaves of pineapple plants grown under CAM-inducing conditions showed higher leaf thickness and more developed cuticles and hypodermic tissue. Proteomic profiles of several proteins, isoenzyme patterns and transcriptomic profiles were also measured. Five major spots were isolated and identified, two of them for the first time in Ananas comosus (OEE 1; OEE 2) and the other three corresponding to small fragments of the large subunit of Rubisco (LSU). PEPC and PEPCK were also detected by immunobloting of 2DE at the end of both ex vitro treatments (C3/CAM) during the dark period. Isoenzymes of SOD and CAT were identified by electrophoresis and the transcript levels of OEE 1 and CAT were associated with CAM metabolism in pineapple plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

GR:

Glutathione reductase

LSU:

Rubisco large subunit

OEE:

Oxygen Evolving Enhancer

PEPC:

Phosphoenolpyruvate carboxylase

PEPCK:

Phosphoenolpyruvate carboxykinase

Rubisco:

Ribulose-1,5-bisphosphate carboxylase oxygenase

SOD:

Superoxide dismutase

SSU:

Rubisco small subunit

References

  • Anderson M, Prasad T, Stewart C (1995) Changes in isoenzyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol 109:1247–1257

    CAS  PubMed  Google Scholar 

  • Antony E, Taybi T, Courbot M, Mugford S, Smith A, Borland A (2008) Cloning, localization and expression analysis of vacuolar sugar transporters in the CAM plant Ananas comosus (pineapple). J Exp Bot 59:1895–1908. doi:10.1093/jxb/ern077

    Google Scholar 

  • Aragón C, Carvalho L, González J, Escalona M, Amâncio S (2009) Sugarcane (Saccharum sp. Hybrid) propagated in headspace renovating systems shows autotrophic characteristics and develops improved anti-oxidative response. Tropical Plant Biol 2:38–50

    Article  Google Scholar 

  • Aragón C, Carvalho L, González J, Escalona M, Amâncio S (2010) Ex vitro acclimatization of plantain plantlets micropropagated in temporary immersion bioreactor. Biol Plant 54:237–244

    Article  Google Scholar 

  • Aragón C, Carvalho L, González J, Escalona M, Amâncio S (2012) The physiology of ex vitro pineapple (Ananas comosus L. Merr. var MD-2) as CAM or C3 is regulated by the environmental conditions. Plant Cell Rep 31:757–769

    Article  PubMed  Google Scholar 

  • Barboza S, Ribeiro D, Teixeira J, Portes T, Souza L (2006) Anatomia foliar de plantas micropropagadas de abacaxi. Pesquiza Agropecuaria Brasileira 41:185–194 (in portuguese)

    Article  Google Scholar 

  • Borland A, Taybi T (2004) Synchronization of metabolic processes in plants with Crassulacean acid metabolism. J Exp Bot 55:1255–1265. doi:10.1093/jxb/erh105

    CAS  Google Scholar 

  • Borland A, Maxwell K, Griffiths H (2000) Ecophysiology of plants with cassulacean acid metabolism. In: Leegood R, Sharkey T, von Caemmer S (eds) Photosynthesis: physiology and metabolism. Kluwer Academic Publishers, Dordrecht, pp 583–600

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Carvalho L, Esquível M, Amâncio S (2005) Stability and activity of Rubisco in chestnut plantlets transferred to ex vitro conditions under elevated CO2. In Vitro Cell Dev Biol - Plant 41:525–531

    Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116. doi:10.1007/BF02670468

    Article  CAS  Google Scholar 

  • Chollet R, Vidal J, O’Leary M (1996) Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol 47:273–298

    Article  CAS  PubMed  Google Scholar 

  • Coito J, Rocheta M, Carvalho L, Amancio S (2012) Microarray-based uncovering reference genes for quantitative real time PCR in grapevine under abiotic stress. BMC Res Not 5:220

    Article  CAS  PubMed  Google Scholar 

  • Coppens G, Leal F (2003) Morphology, anatomy and taxonomy. In: Bartholomew D, Paull R, Rohrbach K (eds) The pineapple: botany, production and uses. CABI, Wallingford, pp 13–32

    Google Scholar 

  • Coppens G, Duval M, Van Miegroet F (1993) Fertility and self incompatibility in the genus Ananas. Acta Horti 334:45–51

    Google Scholar 

  • Coveca C (2002) Commission from Veracruz for agricultural commercialization. Government of Veracruz department, Mexico. (Original in Spanish)

  • Crayn D, Winter K, Smith J (2004) Multiple origin of crassulacean acid metabolism and the epiphytic habit in neotropical family Bromeliaceae. PNAS 101:3703–3708. doi:10.pnas.0400366101

    Article  CAS  PubMed  Google Scholar 

  • Cushman J (2005) Crassulacean acid metabolism: recent advances and future opportunities. Func Plant Biol 32:375–380

    Article  CAS  Google Scholar 

  • D’Eeckenbrugge GC, Leal F (2003) Morphology, anatomy and taxonomy. In: Bartholomew R, Paull R, Rohrbach K (eds) The Pineapple. Botany, productions and uses. CABI, Wallingford, pp 13–166

    Chapter  Google Scholar 

  • Donahue J, Okpodu C, Cramer C, Grabau E, Alscher R (1997) Responses of antioxidants to paraquat in pea leaves: relationships to resistance. Plant Physiol 113:249–257

    CAS  PubMed  Google Scholar 

  • Escalona M, Lorenzo J, González B, Daquinta M, Borroto C, González J, Desjardins Y (1999) Pineapple micropropagation in temporary immersion systems. Plant Cell Rep 18:743–748

    Article  CAS  Google Scholar 

  • Espírito Santo A, Pugialli HRL (1998) Estudo da plasticidade anatômica foliar de Stromanthe thalia (Vell.) JMA Braga (Marantaceae) em dois ambientes de Mata Atlântica. Rodriguésia 50:107–122 (in portuguese)

    Google Scholar 

  • Esquível M, Ferreira R, Teixeira A (1998) Protein degradation in C3 and C4 plants with particular reference to ribulose bisphosphate carboxylase and glycolate oxidase. J Exp Bot 322:807–816

    Google Scholar 

  • FAOSTAT (Food and Agriculture Organization of the United Nations) (2011) FAO statistic division. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed May 20, 2013

  • Ferreira R, Franco E, Teixeira A (1996) Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation. Biochem J 318:227–234

    CAS  PubMed  Google Scholar 

  • Ferreira R, Esquível M, Teixeira A (2000) Catabolism of ribulose bisphosphate carboxylase from higher plants. Curr Top Phytochemistry 3:130–165

    Google Scholar 

  • Gehrig H, Wood J, Cushman M, Virgo A, Cushman J, Winter K (2005) Large gene family of phosphoenolpyruvate carboxylase in the crassulacean acid metabolism plant Kalanchoe pinnata (Crassulaceae) characerised by partial cDNA sequence analysis. Func Plant Biol 32:467–472. doi:10.1071/FP05079

    Article  CAS  Google Scholar 

  • Guralnick L, Ku M, Edwards G, Strand D, Hockema B, Earnest J (2001) Induction of PEP carboxylase and Crassulacean acid metabolism with Gibberellic acid in Mesembryanthemum crystallinum. Plant Cell Physiol 42:236–239

    Article  CAS  PubMed  Google Scholar 

  • Holtum J, Smith A, Neuhaus E (2005) Intracellular transport and pathways carbon flow in plants with crassulacean acid metabolism. Func Plant Biol 32:429–449

    Article  CAS  Google Scholar 

  • Kopka J, Provart N, Muller-Rober B (1997) Potato ward cells respond to drying soil by a complex change in the expression of genes related to carbon metabolism and turgor regulation. Plant J 11:871–882. doi:10.1046/j.1365-313X.1997.110408771.x

    Article  CAS  PubMed  Google Scholar 

  • Kore-eda S, Noake C, Ohishi M, Ohishi J, Cushman J (2005) Transcriptional profiles of organellar metabolite transporters during induction of crassulacean acid metabolism in mesembryanthenum crystallinum. Func Plant Biol 32:451–466

    Article  CAS  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the heat of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  • Lara M, Disante K, Podestá F, Andreo C, Drincovich M (2003) Induction of a Crassulacean acid like metabolism in the C4 succulent plant, Portulaca oleracea L.: physiological and morphological changes are accompanied by specific modifications in phosphoenolpyruvate carboxylase. Photosynthesis Res 77:241–254

    Article  CAS  Google Scholar 

  • Luttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652. doi:10.1093/aob/mch087

    Article  PubMed  Google Scholar 

  • Madison M (1977) A revision of Monstera (Araceae). In: Contributions of the Gray Herbarium, vol 207. Harvard University, Cambridge, 3–100

  • Murakami R, Ifuku K, Takabayashi A, Shikanai T, Endo T, Sato F (2002) Characterization of an Arabidopsis thaliana mutant with impaired psbO, one of two genes encoding extrinsic 33-kDa proteins in photosystem II. FEBS Lett 523:138–142

    Article  CAS  PubMed  Google Scholar 

  • Nelson E, Sage T, Sage R (2005) Functional leaf anatomy of plants with crassulacean acid metabolism. Func Plant Biol 32:409–419

    Article  Google Scholar 

  • Nimmo H (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5:75–80. doi:10.1016/S1360-1385(99)01543-5

    Article  CAS  PubMed  Google Scholar 

  • Pérez C (2005) Técnicas estadísticas con SPSS 12. Aplicaciones al análisis de datos. ISBN 84-205-4410-8. Pearson Educación S.A. (Ed), España. pp 1–120

  • Pérez G, Mbogholi A, Sagarra F, Aragón C, González J, Isidrón M, Lorenzo J (2011) Morphological and physiological characterization of two new pineapple somaclones derived from in vitro culture. In Vitro Cell Dev Biol - Plant 47:428–433. doi:10.1007/s11627-011-9342-y

  • Pérez G, Yanez E, Mbogholi A, Valle B, Sagarra F, Yabor L, Aragón C, González J, Isidrón M, Lorenzo J (2012) New Pineapple Somaclonal Variants: P3R5 and Dwarf. Amer J Plant Sci 3:1–11. doi:10.4236/ajps.2012.31001

    Article  Google Scholar 

  • Ramagli L (1999) Quantifying protein in 2D PAGE solubilization buffers. In: Link AJ (ed) Methods in molecular biology: 2D proteome analysis protocols. Humana Press, Totowa, p 112

    Google Scholar 

  • Rao M, Paliyath G, Ormrod D (1996) Ultraviolet-B- and ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136. doi:10.1104/pp.110.1.125

    Article  CAS  PubMed  Google Scholar 

  • Read P (2007) Micropropagation: past, present and future. Acta Horti 748:17–28

    CAS  Google Scholar 

  • Sage R (2002) Are CAM and C4 photosynthesis incompatible? Func Plant Biol 29:775–785

    Article  CAS  Google Scholar 

  • Shao H, Chu L, Zhao Ch, Guo Q, Liu X, Ribaut J (2006) Plantlets gene regulatory network system under abiotic stress. Acta Biologica Szegediensis 50:1–9

    Google Scholar 

  • Shao H, Chu L, Lu Z, Kang C (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plantlets cells. Int J Biol Sci 4:8–14

    Article  CAS  Google Scholar 

  • Sopie E, Tanoh H, Kouakou L, Yatty J, Kouamé P, Mérillon J (2011) Phenolic profiles of pineapple fruits (Ananas comosus L. Merrill) Influence of the origin of suckers. AJBAS 5:1372–1378

    Google Scholar 

  • Vidal J, Chollet R (1997) Regulatory phosphorylation of C4 PEP carboxylase. Trends Plant Sci 2:230–237

    Article  Google Scholar 

  • Weise S, van Wijk K, Sharkey T (2011) The role of transitory starch in C3, CAM, and C4 metabolism and opportunities for engineering leaf starch accumulation. J Exp Bot 62:3109–3118. doi:10.1093/jxb/err035

    Article  CAS  PubMed  Google Scholar 

  • Willert D, Armbrüster N, Drees T, Zaborowski M (2005) Welwitschia mirabilis: CAM or not CAM—what is the answer? Func Plant Biol 32:389–395

    Article  Google Scholar 

  • Wilson M, Greenberg B (1999) Tryptophan photolysis leads to a UVB-induced 66 kDa photoproduct of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in vitro and in vivo. Photochem Photobiol 70:49–51

    Google Scholar 

  • Winter K, Smith J (1996) An introduction to crassulacean acid metabolism: biochemical principles and ecological diversity. In: Winter K, Smith J (eds) Crassulacean acid metabolism, ecophysiology and evolution. Springer Verlag, Berlin, pp 1–10

    Chapter  Google Scholar 

  • Yapo E, Kouakou K, Bognonkpe J, Kouame P, Kouakou T (2011) Comparison of pineapple fruit characteristics of plants propagated in three different ways: by suckers, micropropagation and somatic embryogenesis. J Nutr Food Sci 1:110. doi:10.4172/2155-9600.1000110

    Google Scholar 

  • Yi X, McChargue M, Laborde S, Frankel LK, Bricker TM (2005) The manganese-stabilizing protein is required for photosystem II assembly/stability and photoautotrophy in higher plants. J Biol Chem 280:16170–16174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Acknowledgments to Fundação para a Ciência e Tecnologia (FCT) for the financial support to CBAA (PEst-OE/AGR/UI0240/2011) and the PhD grant SFRH/BD/43181/2008 to CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amancio.

Additional information

Communicated by P. Puigdomenech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aragón, C., Pascual, P., González, J. et al. The physiology of ex vitro pineapple (Ananas comosus L. Merr. var MD-2) as CAM or C3 is regulated by the environmental conditions: proteomic and transcriptomic profiles. Plant Cell Rep 32, 1807–1818 (2013). https://doi.org/10.1007/s00299-013-1493-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1493-3

Keywords

Navigation