Skip to main content

Advertisement

Log in

Development of real-time PCR method for the detection and the quantification of a new endogenous reference gene in sugar beet “Beta vulgaris L.”: GMO application

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Here, we describe a new developed quantitative real-time PCR method for the detection and quantification of a new specific endogenous reference gene used in GMO analysis.

Abstract

The key requirement of this study was the identification of a new reference gene used for the differentiation of the four genomic sections of the sugar beet (Beta vulgaris L.) (Beta, Corrollinae, Nanae and Procumbentes) suitable for quantification of genetically modified sugar beet. A specific qualitative polymerase chain reaction (PCR) assay was designed to detect the sugar beet amplifying a region of the adenylate transporter (ant) gene only from the species of the genomic section I of the genus Beta (cultivated and wild relatives) and showing negative PCR results for 7 species of the 3 other sections, 8 related species and 20 non-sugar beet plants. The sensitivity of the assay was 15 haploid genome copies (HGC). A quantitative real-time polymerase chain reaction (QRT-PCR) assay was also performed, having high linearity (R 2 > 0.994) over sugar beet standard concentrations ranging from 20,000 to 10 HGC of the sugar beet DNA per PCR. The QRT-PCR assay described in this study was specific and more sensitive for sugar beet quantification compared to the validated test previously reported in the European Reference Laboratory. This assay is suitable for GMO quantification in routine analysis from a wide variety of matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

C t :

Cycle threshold

CTAB:

Cetyl trimethylammonium bromide

dNTP:

Deoxynucleotide triphosphate

EC:

European Commission

EST:

Expressed sequence tag

EU:

European Union

EU-RL:

European Reference Laboratory

GS:

Glutamine synthase

HGC:

Haploid genome copy

References

  • AFNOR Standard XP-V-03-020-2 (2003) Détection et quantification des organismes végétaux génétiquement modifiés et produits dérivés. Partie 2: Méthodes basées sur la réaction de polymérisation en chaîne, pp 1–20. AFNOR (FR)

  • Anklam E, Gadani F, Heinze P, Pijnenburg H, Van den Eede G (2002) Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived food products. Eur Food Res Technol 214:3–26

    Article  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Barbau-Piednoir E, Lievens A, Vandermassen E, Mbongolo-Mbella EG, Leunda-Casi Nancy Roosens, Sneyers A, M Van Bulcke den M (2012) Four new SYBR_Green qPCR screening methods for the detection of Roundup Ready, LibertyLink and CryIAb traits in genetically modified products. Eur Food Res Technol 234:13–23

    Article  CAS  Google Scholar 

  • Bertheau Y, Diolez A, Kobilinsky A, Magin K (2002) Detection methods and performance criteria for genetically modified organisms. J AOAC Inter 85:801–808

    CAS  Google Scholar 

  • Chaouachi M, Giancola S, Romaniuk M, Laval V, Bertheau Y, Brunel D (2007) A strategy for designing multi-taxa specific reference gene systems. Example of application—ppi phosphofructokinase (ppi-PPF) used for the detection and quantification of three taxa: maize (Zea mays), cotton (Gossypium hirsutum) and rice (Oryza sativa). J Agric Food Chem 55:8003–8010

    Article  PubMed  CAS  Google Scholar 

  • Chaouachi M, El Malki R, Berard A, Romaniuk M, Laval V, Brunel D, Bertheau Y (2008) Development of a real-time PCR method for the differential detection and quantification of four solanaceae in GMO analysis: potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum). J Agric Food Chem 56:1818–1828

    Article  PubMed  CAS  Google Scholar 

  • Codex Committee on Methods of Analysis and Sampling (2012) In-house method validation, Codex Alimentarius Commission, CX/MAS 98/8, Budapest, Hungary, 1998, November 23–27. http://www.fao.org/. Accessed April 2012

  • Community Reference Laboratory for GM Food and Feed (2012) Home. http://gmo-crl.jrc.ec.europa.eu/. Accessed April 2012

  • Dinon AZ, Prins TW, Van Dijk JP, Arisi AC, Scholtens MJ, Kok EJ (2011) Development and validation of real-time PCR screening methods for detection of cry1A.105 and cry2Ab2 genes in genetically modified organisms. Anal Bioanal Chem 400:1433–1442

    Article  PubMed  CAS  Google Scholar 

  • Dohm JC, Lange C, Holtgräwe D, Rosleff Sörensen T, Borchardt D, Schulz B, Lehrach H, Weisshaar B, Himmelbauer H (2011) Palaeohexaploid ancestry for caryophyllales inferred from extensive gene-based physical and genetic mapping of the sugar beet genome (Beta vulgaris). Plant J. doi:10.1111/j.1365-313X.2011.04898.x

    Google Scholar 

  • EN ISO 21571 (2002) International Organization for Standardization, Geneva, Switzerland

  • European Commission (2012) Community reference laboratory for GM food and feed. Event specific method for the quantification of sugar beet line H7-1 using real-time PCR (protocol, accessed April 2012)

  • Fagan J, Schoeler B, Haegert A, Moore J, Beeby J (2010) Performance assessment under field conditions of a rapid immunological test for transgenic. J. Int of Food Science and Technology 36:357–367

    Article  Google Scholar 

  • Ford-Lloyd BV, Williams JT (1975) A revision of Beta section Vulgares (Chenopodiacea), with a new light on the origin of cultivated beets. Bot J Lin Soc 71:89–1402

    Article  Google Scholar 

  • Gašparič MB, Tengs T, La Paz JL, Holst-Jensen A (2010) Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection. Anal Bioanal Chem 396:2023–2029

    Article  Google Scholar 

  • Holst-Jensen A, Bertheau Y, De Loose M, Grohmann L, Hamels S, Hougs L, Morisset D, Pecoraro S, Pla M, den Bulcke MV, Wulff D (2012) Detecting un-authorized genetically modified organisms (GMOs) and derived materials. Biotechnol Adv. doi:10.1016/j.biotechadv.2012.01.024

    PubMed  Google Scholar 

  • Kluga L, Folloni S, Van den Bulcke M, Van den Eede G, Querci M (2012) Applicability of the ‘‘Real-Time PCR-Based Ready-to-Use Multi-Target Analytical System for GMO Detection’’ in processed maize matrices. Eur Food Res Technol 234:109–118

    Article  CAS  Google Scholar 

  • Kodama T, Kuribara H, Minegishi Y, Futo S, Watai M, Sawada C, Watanabe T, Akiyama H, Maitani T, Teshima R, Furui S, Hino A (2009) Evaluation of modified PCR quantitation of genetically modified maize and soybean using reference molecules: interlaboratory study. J AOAC Int 92:223–233

    PubMed  CAS  Google Scholar 

  • Matsuoka T, Kawashima Y, Akiyama H, Miura HA (2000) Method of detecting recombinant DNAs from four lines of genetically modified maize. J Food Hyg Soc Jpn 41:137–143

    Article  CAS  Google Scholar 

  • Paternò A, Marchesi U, Gatto F, Verginelli D, Quarchioni C, Fusco C, Zepparoni A, Amaddeo D, Ciabatti I (2009) Finding the joker among the maize endogenous reference genes for genetically modified organism (GMO) detection. J Agric Food Chem 57:11086–11091

    Article  PubMed  Google Scholar 

  • Sarachu M, Colet M (2005) wEMBOSS: a web interface for EMBOSS. Bioinformatics 21:540–541

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Borchardt DC, Schäfer-Pregl R, Nagl N, Glass C, Jeppsson A, Gebhardt C, Salamini F (1999) PCR-Based cloning and segregation analysis of functional gene homologues in Beta vulgaris. Mol Gen Genet 262:515–524

    Article  PubMed  CAS  Google Scholar 

  • Shindo Y, Kuribara H, Matsuoka T, Futo S, Sawada CA (2002) Validation of real-time PCR analysis for line-specific quantitation of genetically modified maize and soybean using new reference molecules. J AOAC Int 85:1119–1126

    PubMed  CAS  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Tranzschel W (1927) Die Arten der Gattung Beta. Bull Appl Bot Plant Breed 17:203–223

    Google Scholar 

  • Trifa Y, Zhang D (2004) DNA content in embryo and endosperm of maize kernal (Zea mays L.): impact on GMO quantification. J Agric Food Chem 52:1044–1048

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Jiang L, Rao J, Liu Y, Yang LK, Zhang D (2010) Evaluation of four genes in rice for their suitability as endogenous reference standards in quantitative PCR. J Agric Food Chem 58:11543–11547

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Teng D, Yang Y, Tian F, Guan Q, Wang J (2011) Construction of a reference plasmid molecule containing eight targets for the detection of genetically modified crops. Appl Microbiol Biotechnol 90:721–731

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the INRA groups who provided us samples and all the members of the EPGV-INRA unit in Evry/France and MDO laboratory in INRA Versailles/France for their precious help for providing samples and for the paper redaction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Chaouachi.

Additional information

Communicated by J. Register.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaouachi, M., Alaya, A., Ali, I.B.H. et al. Development of real-time PCR method for the detection and the quantification of a new endogenous reference gene in sugar beet “Beta vulgaris L.”: GMO application. Plant Cell Rep 32, 117–128 (2013). https://doi.org/10.1007/s00299-012-1346-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1346-5

Keywords

Navigation