Skip to main content
Log in

Development of transgenic pearl millet (Pennisetum glaucum (L.) R. Br.) plants resistant to downy mildew

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Transgenic pearl millet lines expressing pin gene—exhibiting high resistance to downy mildew pathogen, Sclerospora graminicola—were produced using particle-inflow-gun (PIG) method. Shoot-tip-derived embryogenic calli were co-bombarded with plasmids containing pin and bar genes driven by CaMV 35S promoter. Bombarded calli were cultured on MS medium with phosphinothricin as a selection agent. Primary transformants 1T0, 2T0, and 3T0 showed the presence of both bar and pin coding sequences as evidenced by PCR and Southern blot analysis, respectively. T1 progenies of three primary transformants, when evaluated for downy mildew resistance, segregated into resistant and susceptible phenotypes. T1 plants resistant to downy mildew invariably exhibited tolerance to Basta suggesting co-segregation of pin and bar genes. Further, the downy mildew resistant 1T1 plants were found positive for pin gene in Southern and Northern analyses thereby confirming stable integration, expression, and transmission of pin gene. 1T2 progenies of 1T0 conformed to dihybrid segregation of 15 resistant:1 susceptible plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

BAP:

N6-benzylaminopurine

pin :

synthetic prawn antifungal protein encoding gene

References

  • Abedina M, Henry RJ, Blankeney AB, Lewin LG (2000) Accessing genes in the tertiary gene pool of rice by direct introduction of total DNA from Zizania palustris (wild rice). Plant Mol Biol Rep 18:133–138

    Article  Google Scholar 

  • Bilang R, Zhang S, Leduc N, Iglesias VA, Gisel A, Simmonds J, Potrykus I, Sautter C (1993) Transient gene expression in vegetative shoot apical meristems of wheat after ballistic microtargetting. Plant J 4:735–744

    Article  CAS  Google Scholar 

  • Bui-Dang-Ha D, Pernes J (1986) Pearl Millet (Pennisetum americanum L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, crops I, vol. 2. Springer, Berlin Heidelberg New York, pp 234–249

    Google Scholar 

  • Casas AM, Kononowicz AK, Bressan RA, Hasegawa PM (1995) Cereal transformation through particle bombardment. In: Janick J (ed) Plant breeding reviews, vol. 13. Wiely, New York, pp 235–264.

  • Chowdari KV, Davierwala AP, Gupta VS, Ranjekar PK, Govila OP (1998) Genotype identification and assessment of genetic relationships in pearl millet [Pennisetum glaucum (L.) R. Br.] using microsatellites and RAPDs. Theor Appl Genet 97:154–162

    Article  CAS  Google Scholar 

  • Deshaprabhu SB (ed) (1991) The wealth of India. Raw materials, Vol.VII (N-Pe). Publication and Information Directorate, CSIR, New Delhi, pp 292–308

  • FAO (1998) Production yearbook, vol. 52. FAO, United Nation, Rome

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle in flow gun for DNA delivery to plant cells. Plant Cell Rep 11:323–328

    Article  CAS  Google Scholar 

  • Finnegan J, McElroy D (1994) Transgenic inactivation: plants fight back! Biotechnology 12:883–888

    Article  Google Scholar 

  • Flavell RB (1994) Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci USA 91:3490–3496

    Article  PubMed  CAS  Google Scholar 

  • Girgi M, O’Kennedy MM, Morgenstern A, Mayer G, Lorz H, Oldach KH (2002) Transgenic and herbicide resistant pearl millet (Pennisetum glaucum L.) R. Br. via microprojectile bombardment of scutellar tissue. Mol Breed 10:243–252

    Article  CAS  Google Scholar 

  • Goldman JJ, Hanna WW, Fleming G, Ozias-Akins P (2003) Fertile transgenic pearl millet [Pennisetum glaucum (L.) R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo-derived embryogenic tissues. Plant Cell Rep 21:999–1009

    Article  PubMed  CAS  Google Scholar 

  • Hadi MZ, McMullen MD, Finer JJ (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 15:500–505

    Article  CAS  Google Scholar 

  • Hong RW, Shchepetov M, Weiser JN, Axelsen PH (2003) Transcriptional profile of the Escherichia coli response to the antimicrobial insect peptide Cecropin A. Antimicrob Agents Chemother 47:1–6

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Klein TM, Gradziel T, Fromm ME, Sanford JC (1988) Factors influencing gene delivery into Zea mays cells by high-velocity microprojectiles. Bio/technology 6:559–563

    Article  CAS  Google Scholar 

  • Kohli A, Ghareyazie B, Kim HS, Khush GS, Bennett J (1996) Cytosine methylation implicated in silencing of beta glucuronidase genes in transgenic rice. In: Khush GS (ed) Rice genetics III. Proceedings of the third international rice genetics symposium, Manila, Philippines. IRRI, Los Banos Philippines, pp 825–828

    Chapter  Google Scholar 

  • Lambe P, Dinant M, Deltour R (2000) Transgenic pearl millet (Pennisetum glaucum). In: Bajaj YPS (ed), Biotechnology in agriculture and forestry, transgenic crops I, vol. 46. Springer, Berlin Heidelberg, New York, pp 84–108

    Google Scholar 

  • Lambe P, Dinant M, Matagne RF (1995) Differential long-term expression and methylation of the hygromycin phosphotransferase (hph) and β-glucuronidase (GUS) genes in transgenic pearl millet (Pennisetum glaucum) callus. Plant Sci 108:51–62

    Article  CAS  Google Scholar 

  • Madhavi AL, Rao KV, Reddy VD (2005) Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci 169:657–667

    Article  CAS  Google Scholar 

  • Maqbool SB, Christou P (1999) Multiple traits of agronomic importance in transgenic indica rice plants: analysis of transgene integration patterns, expression levels and stability. Mol Breed 5:471–480

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioaasays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nene YL, Singh SD (1976) Downy mildew and ergot of pearl millet. Pest Assess News Summ 22:366–385

    Google Scholar 

  • O’Kennedy MM, Burger JT, Berger DK (2001) Transformation of elite white maize using the particle inflow gun and detailed analysis of a low-copy integration event. Plant Cell Rep 20:721–730

    Article  CAS  Google Scholar 

  • O’Kennedy MM, Burger JT, Botha FC (2004) Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep 22:684–690

    Article  PubMed  CAS  Google Scholar 

  • O’Kennedy MM, Burger JT, Watson TG (1998) Stable transformation of Hi-II maize using particle inflow gun. S Afr J Sci 94:188–192

    CAS  Google Scholar 

  • Rachie KO, Majmudar JV (1980) Pearl millet. Pennsylvania State University Press, University Park, Pennsylvania, USA, pp 307

    Google Scholar 

  • Rathus C, Nguyen TV, Able JA, Gray S, Godwin ID (2001) Optimizing sorghum transformation technology via somatic embryogenesis. In: Seetharama N, Godwin ID (eds) Sorghum tissue culture, transformation & genetic engineering. ICRISAT & Oxford Publishers, India

    Google Scholar 

  • Russell JA, Roy MK, Sanford JC (1992) Major improvements in biolistic transformation of suspension-cultured tobacco cells. In Vitro Cell Dev Biol 28:97–105

    Article  Google Scholar 

  • Safeeulla KM (1977) Genetic vulnerability: the basis of recent epidemics in India. Ann New York Acad Sci 287:72–85

    Article  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratories, Cold Spring Harbor, New York

    Google Scholar 

  • Sastry JG, Sivaramakrishnan S, Rao VP, Thakur RP, Singru RS, Gupta VS, Ranjekar PK (2001) Genetic basis of host specificity in Sclerospora graminicola, the pearl millet downy mildew pathogen. Indian J Phytopathol 54:323–328

    CAS  Google Scholar 

  • Singh SD, Talukdar BS (1996) Recovery resistance to downy mildew in pearl millet parental lines ICMA 1 and ICMB 1. Crop Sci 36:201–203

    Article  Google Scholar 

  • Singh SD, Wilson JP, Navi SS, Talukdar BS, Hess DE, Reddy KN (1997) Screening techniques and sources of resistance to downy mildew and rust in pearl millet. Information Bulletin No. 48, ICRISAT

  • Sivaramakrishnan S, Thakur RP, Seetha K, Rao VP (2003) Pathogenic and genetic diversity among Indian isolates of Sclerospora graminicola from pearl millet. Indian Phytopathol 56:392–397

    Google Scholar 

  • Taylor MG, Vasil IK (1991) Histology of, and physical factors affecting, transient GUS expression in pearl millet (Pennisetum glaucum (L.) R. Br.) embryos following microprojectile bombardment. Plant Cell Rep 10:120–125

    Article  CAS  Google Scholar 

  • Taylor MG, Vasil V, Vasil IK (1993) Enhanced GUS expression in cereal/grass cell suspensions and immature embryos using the maize ubiquitin-based plasmid pAHC25. Plant Cell Rep 12:491–495

    CAS  Google Scholar 

  • Thakur RP, Rao VP, Hash CT (1998) A highly virulent pathotype of Sclerospora graminicola from Jodhpur, Rajasthan, India. Int Sorghum Millets Newslett 39:140–142

    Google Scholar 

  • Thakur RP, Rao VP, Sastry JG, Sivaramakrishnan S, Amruthesh KN, Barbind LD (1999) Evidence for a new virulent pathotype of Sclerospora graminicola on pearl millet. J Mycol Plant Pathol 29:61–69

    Google Scholar 

  • Vain P, McMullen MD, Finer JJ (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12:84–88

    Article  Google Scholar 

  • Zhang P, Puonti-Kaerlas J (2000) PIG-mediated cassava transformation using positive and negative selection. Plant Cell Rep 19:1041–1048

    Article  CAS  Google Scholar 

  • Zhang S, Cho M-J, Kopret T, Yun R, Bregitzer P, Lemaux PG (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep 18:959–966

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the generous financial support from the Department of Biotechnology, Government of India (New Delhi). We extend our thanks to Dr. V. Panduranga Rao and Dr. R. P. Thakur of ICRISAT for their technical guidance and support for fungal bioassay of pearl millet plants. Research fellowship awarded to AML by the Council of Scientific and Industrial Research, Government of India (New Delhi), is gratefully acknowledged. We thank Mr. M. Suresh Reddy, technical officer, Centre for Plant Molecular Biology, Osmania University, for his unstinted help and co-operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Reddy.

Additional information

Communicated by J. C. Register

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latha, A.M., Rao, K.V., Reddy, T.P. et al. Development of transgenic pearl millet (Pennisetum glaucum (L.) R. Br.) plants resistant to downy mildew. Plant Cell Rep 25, 927–935 (2006). https://doi.org/10.1007/s00299-006-0141-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0141-6

Keywords

Navigation