Skip to main content
Log in

Cold acclimation induced genes of trifoliate orange (Poncirus trifoliata)

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Commercial citrus varieties are sensitive to low temperature. Poncirus trifoliata is a close relative of Citrus species and has been widely used as a cold-hardy rootstock for citrus production in low-temperature environments. mRNA differential display-reverse transcription (DDRT)-PCR and quantitative relative-RT-PCR were used to study gene expression of P. trifoliata under a gradual cold-acclimation temperature regime. Eight up-regulated cDNA fragments were isolated and sequenced. These fragments showed high similarities at the amino acid level to the following genes with known functions: betaine/proline transporter, water channel protein, aldo-keto reductase, early light-induced protein, nitrate transporter, tetratricopeptide-repeat protein, F-box protein, and ribosomal protein L15. These cold-acclimation up-regulated genes in P. trifoliata are also regulated by osmotic and photo-oxidative signals in other plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Artus N, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15 gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA 93:13404–13409

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Barakat A, Szick-Miranda K, Chang I-F, Guyot R, Blanc G, Cooke R, Delseny M, Bailey-Serres J (2001) The organization of cytoplasmic ribosomal protein genes in the Arabidopsis genome. Plant Physiol 127:398–415

    Article  CAS  PubMed  Google Scholar 

  • Bartels D (2001) Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance? Trends Plant Sci 6:284–286

    Article  CAS  PubMed  Google Scholar 

  • Bei-Paraskevopoulou T, Kloppstech K (1999) The expression of early light-inducible proteins (ELIPs) under high light stress as defense marker in Northern- and Southern European cultivars of barley (Hordeum vulgare). Physiol Plant 106:105–111

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaption to environmental stresses. Plant Cell 7:1099–1111

    Article  CAS  PubMed  Google Scholar 

  • Burczynski ME, Sridhar GR, Palackal NT, Penning TM (2001) The reactive oxygen species- and Michael acceptor-inducible human aldo-keto reductase AKR1C1 reduces the alpha, beta -unsaturated aldehyde 4-hydroxy-2-nonenal to 1,4-dihydroxy-2-nonene. J Biol Chem 276:2890–2897

    Article  CAS  PubMed  Google Scholar 

  • Cai Q, Moore GA, Guy CL (1995) An unusual group 2 LEA gene family in citrus responsive to low temperature. Plant Mol Biol 29:11–23

    CAS  PubMed  Google Scholar 

  • Callis J, Vierstra RD (2000) Protein degradation in signaling. Curr Opin Plant Biol 3:381–386

    Article  CAS  PubMed  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    CAS  PubMed  Google Scholar 

  • Danyluk J, Houde M, Sarhan F (1994) Differential expression of a gene encoding an acidic dehydrin in chilling-sensitive and freezing-tolerant Gramineae species. FEBS Lett 344:20–24

    Article  CAS  PubMed  Google Scholar 

  • Das AK, Cohen PW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J 17:1192–1199

    Article  CAS  PubMed  Google Scholar 

  • Desikan RA-H, Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  PubMed  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed  Google Scholar 

  • Garwe D, Thomson JA, Mundree SG (2003) Molecular characterization of XVSAP1, a stress-responsive gene from the resurrection plant Xerophyta viscosa Baker1. J Exp Bot 54:191–201

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Hajela R, Thomashow MF (1988) Cold acclimation in Arabidopsis. Plant Physiol 87:745–750

    CAS  Google Scholar 

  • Gilmour SJ, Artus N, Thomashow MF (1992) cNDA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol 18:13–21

    CAS  PubMed  Google Scholar 

  • Guerrier G (1996) Fluxes of Na+, K+ and Cl and osmotic adjustment in Lycopersicon pimpinellifolium and L. esculentum during short- and long-term exposures to NaCl. Plant Physiol 97:583–591

    Article  CAS  Google Scholar 

  • Guo F-Q, Young J, Crawford NM (2003) The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell 15:107–117

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Wakasugi Y, Ikoma Y, Yano M, Ogawa K, Kuboi T (1999) cDNA sequence and expression of a cold-responsive gene in Citrus unshiu. Biosci Biotechnol Biochem 63:433–437

    CAS  PubMed  Google Scholar 

  • Hazel JR (1995) Thermal adaption in biological membranes: is homeoviscous adaption the explanation? Annu Rev Physiol 75:19–42

    Google Scholar 

  • Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K, Havaux M (2003) Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc Natl Acad Sci USA 100:4921–4926

    Article  CAS  PubMed  Google Scholar 

  • Ishitani M, Arakawa K, Mizuno K, Kishitani S, Takabe T (1993) Betaine aldehyde dehydrogenase in the Gramineae: levels in leaves of both betaine-accumulating and nonaccumulating cereal plants. Plant Cell Physiol 34:493–495

    CAS  Google Scholar 

  • Jaglo-Ottosen K, Gilmour SJ, Zarka D, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induce COR genes and enhances freezing tolerance. Science 280:104–106

    Google Scholar 

  • Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–459

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503

    Article  CAS  PubMed  Google Scholar 

  • Lafuente MT, Sala JM, Zacarias L (2004) Active oxygen detoxifying enzymes and phenylalanine ammonia-lyase in the ethylene-induced chilling tolerance in citrus fruit. J Agric Food Chem 52:3606–3611

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  Google Scholar 

  • Lynch DV, Steponkus PL (1987) Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L.cv Puma). Plant Physiol 83:761–767

    CAS  Google Scholar 

  • Marty C, Jones B, Bouquin T, Latche A, Pech JC, Bouzayen M (1997) Improved screening of cDNAs generated by mRNA differential display enables the selection of true positives and the isolation of weakly expressed messages. Plant Mol Biol Rep 15:236–245

    Article  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    Article  CAS  Google Scholar 

  • Nesbitt ML, Ebel RC, Findley D, Wilkins B, Woods F, Himelrick D (2002) Assays to assess freeze injury of Satsuma mandarin (Citrus unshiu). HortScience 37:871–877

    Google Scholar 

  • Owens CL, Thomashow MF, Hancock JF, Iezzoni AF (2002) CBF1 orthologs in sour cherry and strawberry and the heterologous expression of CBF1 in strawberry. J Am Soc Hortic Sci 127:489–494

    CAS  Google Scholar 

  • Popova OV, Dietz KJ, Golldack D (2003) Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum. Plant Mol Biol 52:569–578

    Article  CAS  PubMed  Google Scholar 

  • Porat R, Pavoncello D, Lurie S, Mcollum TG (2002) Identification of a grapefruit cDNA belonging to a unique class of citrus dehydrins and characterization of its expression patterns under temperature stress conditions. Physiol Plant 115:598–603

    Article  CAS  PubMed  Google Scholar 

  • Powles S, Berry J, Bjorkman O (1983) Interaction between light and chilling temperature on the inhibition of photosynthesis in chilling-sensitive plants. Plant Cell Environ 6:117–123

    Google Scholar 

  • Sakamoto T, Bryant DA (1998) Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC7002. Arch Microbiol 169:10–19

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Ballesta MT, Lluch Y, Gosalbes MJ, Zacarias L, Granell A, Lafuente MT (2003) A survey of genes differentially expressed during long-term heat-induced chilling tolerance in citrus fruit. Planta 218:65–70

    Article  CAS  PubMed  Google Scholar 

  • Schäffner AR (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204:131–139

    Article  PubMed  Google Scholar 

  • Steponkus PL, Uemura M, Joseph R, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95:14570–14575

    Article  CAS  PubMed  Google Scholar 

  • Taylor J, Harrier LA (2003) Expression studies of plant genes differentially expressed in leaf and root tissues of tomato colonised by arbuscular mycorrhizal fungus Glomus mosseae. Plant Mol Biol 51:619–629

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1994) Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. In: Meyeowitz E, Sommervile C (ed) In Arabidopsis. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 807–834

    Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–8

    Article  CAS  PubMed  Google Scholar 

  • Torres JH, Chatellard P, Stutz E (1995) Isolation and characterization of gmsti, a stress-inducible gene from soybean (Glycine max) coding for a protein belonging to the TPR (tetratricopeptide repeats) family. Plant Mol Biol 27:1221–1226

    CAS  PubMed  Google Scholar 

  • Tsay Y, Schroeder J, Feldmann K, Crawford N (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–713

    Article  CAS  PubMed  Google Scholar 

  • Tseng MJ, Li PH (1991) Changes in protein synthesis and translatable messenger RNA populations associated with ABA-induced cold hardiness in potato (Solanum commersonii). Physiol Plant 81:349–358

    Article  CAS  Google Scholar 

  • Ueda A, Shi W, Sanmiya K, Shono M, Takabe T (2001) Functional analysis of salt-inducible proline transporter of barley roots. Plant Cell Physiol 42:1282–1289

    Article  CAS  PubMed  Google Scholar 

  • Verkman AS, van Hoek AN, Ma T, Frigeri A, Skach WR (1996) Water transport across mammalian cell membranes. Am J Physiol 270:C12–C30

    CAS  PubMed  Google Scholar 

  • Webber HJ, Reuther W, Lawton HW (1967) History and development of the citrus industry. In: Reuther W, Webber HJ, Batchelor LD (eds) The citrus industry, vol 1. University of California, Berkeley, pp 1–39

    Google Scholar 

  • Wolfraim L, Langis R, Tyson H, Dhindsa R (1993) cDNA sequence, expression and transcript stability of a cold acclimation-specific gene, cas18, of alfalfa (Medicago falcata) cells. Plant Physiol 101:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Katsuhara M, Kelly WB, Michalowski CB, Bohnert HJ (1995) A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant. Plant Cell 7:1129–1142

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Koizumi M, Urao S, Shinozaki K (1992) Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol 33:217–224

    CAS  Google Scholar 

  • Yamauchi A, Uchida S, Kwon H, Preston A, Robey R, Garcia-Perez A, Burg M, Handler J (1992) Cloning of a Na+- and Cl-dependent betaine transporter that is regulated by hypertonicity. J Biol Chem 267:649–652

    CAS  PubMed  Google Scholar 

  • Yelenosky G (1979) Accumulation of free proline in citrus leaves during cold hardening of young trees in controlled temperature regimes. Plant Physiol 64:425–427

    CAS  Google Scholar 

  • Yelenosky G (1985) Cold hardiness in Citrus. Hortic Rev 7:201–238

    Google Scholar 

  • Yubero-Serrano E, Moyano E, Medina-Escobar N, Munoz-Blanco J, Caballero J (2003) Identification of a strawberry gene encoding a non-specific lipid transfer protein that responds to ABA, wounding and cold stress. J Exp Bot 54:1865–1877

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Brandon Hockema, Bryan Wilkins, and Monte Nesbitt for their help in preparing the samples. This research was funded in part by USDA CSREES Special Research Grants OEP 2001-03124 and 2002-06162 and the Alabama Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenny Dane.

Additional information

Communicated by J.C. Register III

The first two authors have contributed equally to this work.

The nucleotide sequences reported in this paper have been submitted to GenBank under accession numbers of CN779663 (P1), CN779664 (P2), CN779665 (P3), CN779666 (P4), CN779667 (P5), CN779668 (P6), CN779669 (P7) and CN779670 (P8).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Ck., Lang, P., Dane, F. et al. Cold acclimation induced genes of trifoliate orange (Poncirus trifoliata). Plant Cell Rep 23, 764–769 (2005). https://doi.org/10.1007/s00299-004-0883-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0883-y

Keywords

Navigation