Skip to main content
Log in

Agrobacterium-mediated transformation of European chestnut embryogenic cultures

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

An innovative and efficient genetic transformation protocol for European chestnut is described in which embryogenic cultures are used as the target material. When somatic embryos at the globular or early-torpedo stages were cocultured for 4 days with Agrobacterium tumefaciens strain EHA105 harbouring the pUbiGUSINT plasmid containing marker genes, a transformation efficiency of 25% was recorded. Murashige and Skoog culture medium containing 150 mg/l of kanamycin was used as the selection medium. The addition of acetosyringone was detrimental to the transformation efficiency. Transformation was confirmed by a histochemical β-glucuronidase (GUS ) assay, PCR and Southern blot analyses for the uidA (GUS) and nptII (neomycin phosphotransferase II) genes. At present, 93 GUS-positive chestnut embryogenic lines are being maintained in culture. Low germination rates (6.3%) were recorded for the transformed somatic embryos. The presence of the transferred genes in leaves and shoots derived from the germinated embryos was also verified by the GUS assay and PCR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3a–f
Fig. 4a–c
Fig. 5a,b

Similar content being viewed by others

Abbreviations

BA:

Benzyladenine

kan:

Kanamycin

NAA:

α-Naphthaleneacetic acid

X-Gluc:

5-Bromo-4-chloro-3-indolyl-β-d-glucuronide

References

  • Benfey PN, Ren L, Chua N (1990) Tissue-specific expression from CaMV enhancer subdomains in early stages of plant development. EMBO J 9:1677–1684

    CAS  PubMed  Google Scholar 

  • Bhatnagar S, Khurana P (2003) Agrobacterium tumefaciens-mediated transformation of Indian mulberry, Morus indica cv. K2: a time-phased screening strategy. Plant Cell Rep 21:669–675

    CAS  PubMed  Google Scholar 

  • Bolar JP, Norelli JL, Wong K-W, Hayes CK, Harman GE, Aldwinckle HS (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77

    CAS  Google Scholar 

  • Carraway DT, Merkle SA (1997) Plantlet regeneration from somatic embryos of American chestnut. Can J For Res 27:1805–1812

    Article  Google Scholar 

  • Carraway DT, Wilde HD, Merkle SA (1994) Somatic embryogenesis and gene transfer in American chestnut. J Am Chestnut Found 8:29–33

    Google Scholar 

  • Cerda F, Aquea F, Gebauer M, Medina C, Arce-Johnson P (2002) Stable transformation of Pinus radiata embryogenic tissue by Agrobacterium tumefaciens. Plant Cell Tissue Org Cult 70:251–257

    Article  CAS  Google Scholar 

  • Cervera M, Pina JA, Juárez J, Navarro L, Peña L (1998) Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep 18:271–278

    Article  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    CAS  PubMed  Google Scholar 

  • Connors BJ, Miller M, Maynard CA, Powell WA (2002) Cloning and characterization of promoters from American chestnut capable of directing reporter gene expression in transgenic Arabidopsis plants. Plant Sci 163:771–781

    Article  CAS  Google Scholar 

  • Corredoira E, Ballester A, Vieitez AM (2003) Proliferation, maturation and germination of Castanea sativa Mill. somatic embryos originated from leaf explants. Ann Bot 92:129–136

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Hernández A, Witjaksono, Litz RE, Gomez Lim M (1998) Agrobacterium tumefaciens-mediated transformation of embryogenic avocado cultures and regeneration of somatic embryos. Plant Cell Rep 17:497–503

    Article  Google Scholar 

  • De Bondt A, Eggermont K, Druart P, De Vil M, Goderis I, Vanderleyden J, Broekaert WF (1994) Agrobacterium-mediated transformation of apple (Malus × domestica Borkh.): an assessment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Rep 13:587–593

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dupré P, Lacoux J, Neutelings G, Mattar-Laurain D, Fliniaux M-A, David A, Jacquin-Dubreuil A (2000) Genetic transformation of Ginkgo biloba by Agrobacterium tumefaciens. Physiol Plant 108:413–419

    Google Scholar 

  • Eddo R, Rita B, Rosario M (2000) Olive (Olea europaea var. sativa) transformation. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants 2. Kluwer, Dordrecht, pp 245–279

    Google Scholar 

  • Gallego FJ, Martínez I, Celestino C, Toribio M (1997) Testing somaclonal variation using RAPDs in Quercus suber L. somatic embryos. Int J Plant Sci 158:563–567

    Article  CAS  Google Scholar 

  • Gartland JS, McHugh AT, Brasier CM, Irvine RJ, Fenning TM, Gartland KMA (2000) Regeneration of phenotypically normal English elm (Ulmus procera) plantlets following transformation with an Agrobacterium tumefaciens binary vector. Tree Physiol 20:901–907

    CAS  PubMed  Google Scholar 

  • Hiei Y, Toshihiko K, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    CAS  Google Scholar 

  • Humara JM, Marín MS, Parra F, Ordás RJ (1999) Improved efficiency of uidA gene transfer in stone pine (Pinus pinea) cotyledons using a modified binary vector. Can J For Res 29:1627–1632

    Article  CAS  Google Scholar 

  • James DJ, Uratsu S, Cheng J, Negri P, Viss P, Dandekar AM (1993) Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple. Plant Cell Rep 12:559–563

    CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    CAS  Google Scholar 

  • Levée V, Garin E, Klimaszewska K, Séguin A (1999) Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol Breed 5:429–440

    Article  Google Scholar 

  • Liang H, Maynard CA, Allen RD, Powell WA (2001) Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol Biol 45:619–629

    Article  CAS  PubMed  Google Scholar 

  • Lindroth AM, Grönroos R, Clapham D, Svensson J, von Arnold S (1999) Ubiquitous and tissue-specific gus expression in transgenic roots conferred by six different promoters in one coniferous and three angiosperms species. Plant Cell Rep 18:820–828

    Article  CAS  Google Scholar 

  • Maynard C, Xing Z, Bickel S, Powell W (1998) Using genetic engineering to help save the American chestnut: a progress report. J Am Chestnut Found 2:40–56

    Google Scholar 

  • McGranahan GH, Leslie CA, Dandekar AM, Uratsu SL, Yates IE (1993) Transformation of pecan and regeneration of transgenic plants. Plant Cell Rep 12:634–638

    CAS  Google Scholar 

  • Merkle SA, Wiecko AT, Watson-Pauley BA (1991) Somatic embryogenesis in American chestnut. Can J For Res 21:1698–1701

    Google Scholar 

  • Miguel CM, Oliveira MM (1999) Transgenic almond (Prunus dulcis Mill.) plants obtained by Agrobacterium-mediated transformation of leaf explants. Plant Cell Rep 18:387–393

    Article  CAS  Google Scholar 

  • Mondal TK, Bhattacharya A, Ahuja PS, Chand PK (2001) Transgenic tea (Camellia sinensis (L.) O. Kuntze cv. Kangra Jat) plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep 20:712–720

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nebauer SG, Arrillaga I, Del Castillo-Agudo L, Segura J (2000) Agrobacterium tumefaciens-mediated transformation of the aromatic shrub Lavandula latifolia. Mol Breed 6:539–552

    Article  CAS  Google Scholar 

  • Peña L, Séguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:500–506

    Article  PubMed  Google Scholar 

  • Peña L, Cervera M, Juárez J, Ortega C, Pina JA, Durán-Vila N, Navarro L (1995) High efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci 104:183–191

    Article  Google Scholar 

  • Powell WA, Catranis CM, Maynard CA (1995) Synthetic antimicrobial peptide design. Mol Plant Microbe Interact 8:792–794

    CAS  PubMed  Google Scholar 

  • Powell WA, Catranis CM, Maynard CA (2000) Design of self-processing antimicrobial peptides plant protection. Lett Appl Microbiol 31:163–168

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989). Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sánchez MC, San-José MC, Ferro E, Ballester A, Vieitez AM (1997) Improving micropropagation conditions for adult-phase shoots of chestnut. J Hortic Sci 72:433–443

    Google Scholar 

  • Seabra RC, Pais MS (1998) Genetic transformation of European chestnut. Plant Cell Rep 17:177–182

    Article  CAS  Google Scholar 

  • Shiri V, Rao S (1998) Introduction and expression of marker genes in sandalwood (Santalum album L.) following Agrobacterium-mediated transformation. Plant Sci 131:53–63

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1981). Biometry: the principles and practice of statistics and biological research, 2nd edn. Freeman, New York

    Google Scholar 

  • Trontin J-F, Harvengt L, Garin E, Lopez-Vernaza M, Arancio L, Hoebeke J, Canlet F, Pâques M (2002) Towards genetic engineering of maritime pine (Pinus pinaster Ait.). Ann For Sci 59:687–697

    Article  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sánchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    CAS  PubMed  Google Scholar 

  • Vieitez FJ (1995) Somatic embryogenesis in chestnut. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants 2. Angiosperms. Kluwer, Dordrecht, pp 375–407

    Google Scholar 

  • Vieitez AM, Vieitez ML, Vieitez E (1986) Chestnut (Castanea spp.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 1. Trees I. Springer, Berlin Heidelberg New York, pp 393–414

    Google Scholar 

  • Vieitez FJ, San-José MC, Ballester A, Vieitez AM (1990) Somatic embryogenesis in cultured immature zygotic embryos in chestnut. J Plant Physiol 136:253–256

    Google Scholar 

  • Vieitez E, Vieitez ML, Vieitez FJ (1996). El castaño, 1st edn. Edilesa, León

    Google Scholar 

  • Xing Z, Powell WA, Maynard CA (1999) Development and germination of American chestnut somatic embryos. Plant Cell Tissue Org Cult 57:47–55

    Article  Google Scholar 

  • Youngs RL (2000) “A right smart little jolt” loss of the chestnut and a way of life. J For 98:17–21

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. L. Gómez (ETSIM, UPM, Madrid, Spain) for the gift of strain C58C1 and Dr. J. Segura (F. Farmacia, U. Valencia, Spain) for the strain EHA105. We also thank Dr. C. Sánchez (CSIC, Spain) and Dr. E. Sales (EPS, U. Zaragoza, Spain) for their expert advice on molecular techniques, and A. Rial and M. J. Cernadas for their technical assistance. This research was partially supported by MCYT and Xunta de Galicia (Spain), through the projects AGL 2000-1073 and PGIDT01PXI4000IPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Vieitez.

Additional information

Communicated by S.A. Merkle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corredoira, E., Montenegro, D., San-José, M.C. et al. Agrobacterium-mediated transformation of European chestnut embryogenic cultures. Plant Cell Rep 23, 311–318 (2004). https://doi.org/10.1007/s00299-004-0804-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0804-0

Keywords

Navigation