Skip to main content

Advertisement

Log in

Morphological, structural and cytotoxic behavior of starch/silver nanocomposites with synthesized silver nanoparticles using Stevia rebaudiana extracts

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The synthesis of silver nanoparticles (AgNPs) using a Stevia rebaudiana aqueous extract and their dispersion in starch in order to obtain starch/AgNps nanocomposites are shown in this study. The AgNPs and the starch/AgNPs nanocomposites have been characterized by ultraviolet–visible spectroscopy, optical microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis. Furthermore, the interaction of starch/AgNPs nanocomposites with a MCF-7 breast cancer cell line is analyzed. AgNPs with an average size around 15–20 nm have been obtained. starch/AgNPs nanocomposite morphology changes with the content of silver (3, 5 and 8 mM), from totally separated and dispersed nanoparticles to ribbon-type morphology. The diffraction pattern of the starch/AgNPs-3 nanocomposite indicates the formation of silver chloride nanoparticles (AgClNPs). A cytotoxic behavior of starch/AgNPs-3 nanocomposite on MCF-7 cancer cells with less damage to normal cells is observed. Hence, the high dispersion of the AgNPs or AgClNPs in starch could be influencing the selective cytotoxic behavior. Thus, this study proposes the generation of biocompatible composite materials, with AgNPs immobilized on starch. These materials have selective action against breast cancer cells, where the selectivity is controlled through the AgNPs dispersion on the biopolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    CAS  PubMed  Google Scholar 

  2. Akhtar MS, Panwar J, Yun YS (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1:591–602

    CAS  Google Scholar 

  3. Vijayaraghavan K, Ashokkumar T (2017) Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 5:4866–4883

    CAS  Google Scholar 

  4. Sood R, Chopra DS (2018) Metal-plant frameworks in nanotechnology: an overview. Phytomedicine 50:148–156

    CAS  PubMed  Google Scholar 

  5. Zheng K, Setyawati MI, Leong DT, Xie J (2018) Antimicrobial silver nanomaterials. Coordin. Chem Rev 357:1–17

    CAS  Google Scholar 

  6. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    CAS  Google Scholar 

  7. Hemmati S, Rashtiani A, Zangeneh MM, Mohammadi P, Zangeneh A, Veisi H (2019) Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron 158:8–14

    CAS  Google Scholar 

  8. Jha D, Thiruveedula PK, Pathak R, Kumar B, Gautam HK, Agnihotri S, Sharma AK, Kumar P (2017) Multifunctional biosynthesized silver nanoparticles exhibiting excellent antimicrobial potential against multi-drug resistant microbes along with remarkable anticancerous properties. Mat Sci Eng C-Mater 80:659–669

    CAS  Google Scholar 

  9. Ahmadian E, Dizaj SM, Rahimpour E, Hasanzadeh A, Eftekhari A, Zadegan HH, Halajzadeh J, Ahmadian H (2018) Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line. Mat Sci Eng C-Mater 93:465–471

    CAS  Google Scholar 

  10. Yeasmin S, Datta HK, Chaudhuri S, Malik D, Bandyopadhyay A (2017) In-vitro anti-cancer activity of shape controlled silver nanoparticles (AgNPs) in various organ specific cell lines. J Mol Liq 242:757–766

    CAS  Google Scholar 

  11. Ajitha B, Reddy YAK, Jeon HJ, Ahn CW (2018) Synthesis of silver nanoparticles in an eco-friendly way using Phyllanthus amarus leaf extract. Antimicrobial and catalytic activity. Adv Powder Technol 29:86–93

    CAS  Google Scholar 

  12. Maddinedi SB, Mandal BK, Maddili SK (2017) Biofabrication of size controllable silver nanoparticles—a green approach. J Photochem Photobiol B 167:236–241

    CAS  PubMed  Google Scholar 

  13. Ceunen S, Geuns JMC (2013) Steviol glycosides: chemical diversity, metabolism, and function. J Nat Prod 76:1201–1228

    CAS  PubMed  Google Scholar 

  14. Gregersen S, Jeppesen PB, Holst JJ, Hermansen K (2004) Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 53:73–76

    CAS  PubMed  Google Scholar 

  15. Boonkaewwan C, Toskulkao C, Vongsakul M (2006) Anti-inflammatory and immunomodulatory activities of stevioside and its metabolite steviol on THP-1 cells. J Agric Food Chem 54:785–789

    CAS  PubMed  Google Scholar 

  16. Ghanta S, Banerjee A, Poddar A, Chattopadhyay S (2007) Oxidative DNA damage preventive activity and antioxidant potential of Stevia rebaudiana (Bertoni) Bertoni, a natural sweetener. J Agric Food Chem 55:10962–10967

    CAS  PubMed  Google Scholar 

  17. Chatsudthipong V, Muanprasat C (2009) Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Therapeut 121:41–54

    CAS  Google Scholar 

  18. Sadeghi B, Mohammadzadeh M, Babakhani B (2015) Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: characterization and their stability. J Photochem Photobiol B 148:101–106

    CAS  PubMed  Google Scholar 

  19. Alijani HQ, Pourseyedi S, Mahani MT, Khatami M (2019) Green synthesis of zinc sulfide (ZnS) nanoparticles using Stevia rebaudiana Bertoni and evaluation of its cytotoxic properties. J Mol Struct 1175:214–218

    CAS  Google Scholar 

  20. Khatami M, Alijani HQ, Heli H, Sharifi I (2018) Rectangular shaped zinc oxide nanoparticles: green synthesis by Stevia and its biomedical efficiency. Ceram Int 44:15596–15602

    CAS  Google Scholar 

  21. Yilmaz M, Turkdemir H, Kilic MA, Bayram E, Cicek A, Mete A, Ulug B (2011) Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana. Mater Chem Phys 130:1195–1202

    CAS  Google Scholar 

  22. Bujak T, Niziol-Lukaszewska Z, Gawel-Beben K, Seweryn A, Kucharek M, Rybczynska-Tkaczyk K, Matysiak M (2015) The application of different Stevia rebaudiana leaf extracts in the “green synthesis” of AgNPs. Green Chem Lett Rev 8:78–87

    CAS  Google Scholar 

  23. Cheviron P, Gouanvé F, Espuche E (2014) Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohyd Polym 108:291–298

    CAS  Google Scholar 

  24. Ji N, Liu C, Zhang S, Xiong L, Sun Q (2016) Elaboration and characterization of corn starch films incorporating silver nanoparticles obtained using short glucan chains. LWT-Food Sci Technol 74:311–318

    CAS  Google Scholar 

  25. Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V (2019) Recent developments in functionalized polymer nanoparticles for efficient drug delivery systems. Nano-Struct Nano-Objects 20:100397

    CAS  Google Scholar 

  26. Paliwal S, Tilak A, Sharma J, Dave V, Sharma S, Verma K, Tak K, Reddy KR, Sadhu V (2019) Flurbiprofen-loaded ethanolic liposome particles for biomedical applications. J Microbiol Methods 161:18–27

    CAS  PubMed  Google Scholar 

  27. Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR (2019) Lipid-polymer hybrid nanoparticles: synthesis strategies and biomedical applications. J Microbiol Methods 160:130–142

    CAS  PubMed  Google Scholar 

  28. Patil SB, Inamdar SZ, Reddy KR, Raghu AV, Soni SK, Kulkarni RV (2019) Novel biocompatible poly(acrylamide)-grafted-dextran hydrogels: synthesis, characterization and biomedical applications. J Microbiol Methods 159:200–210

    CAS  PubMed  Google Scholar 

  29. Boppana R, Raut SY, Mohan GK, Sa B, Mutalik S, Reddy KR, Das KK, Biradar MS, Kulkarni RV (2019) Novel pH-sensitive interpenetrated network polyspheres of polyacrylamide-g-locust bean gum and sodium alginate for intestinal targeting of ketoprofen: in vitro and in vivo evaluation. Colloids Surf B 180:362–370

    CAS  Google Scholar 

  30. Gulla S, Lomada D, Srikanth VVSS, Shankar MV, Reddy KR, Soni S, Reddy MC (2019) Chapter 11: recent advances in nanoparticles-based strategies for cancer therapeutics and antibacterial applications. Method Microbiol 46:255–293

    CAS  Google Scholar 

  31. Dave V, Gupta A, Singh P, Gupta C, Sadhu V, Reddy KR (2019) Synthesis and characterization of celecoxib loaded PEGylated liposome nanoaprticles for biomedical applications. Nano-Struct Nano-Objects 18:100288

    CAS  Google Scholar 

  32. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci 95:15665–15670

    CAS  PubMed  Google Scholar 

  33. Comsa S, Cimpean AM, Raica M (2015) The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res 35:3147–3154

    CAS  PubMed  Google Scholar 

  34. Jeyaray M, Sathishkumar G, Sivanandhan G, MubarakAli D, Rajesh M, Arun R, Kapildev G, Manickavasagam M, Thajuddin N, Premkumar K, Ganapathi A (2013) Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloid Surf B 106:86–92

    Google Scholar 

  35. Jannathul FM, Lalitha P (2015) Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Prog Biomater 4:113–121

    Google Scholar 

  36. Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139

    CAS  PubMed  Google Scholar 

  37. Ahluwalia V, Elumalai S, Kumar V, Kumar S, Sangwan RS (2018) Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity. Microb Pathog 114:402–408

    CAS  PubMed  Google Scholar 

  38. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    CAS  Google Scholar 

  39. Liz-Marzán LM (2004) Nanometals formation and color. Mater Today 7:26–31

    Google Scholar 

  40. Jin R, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    CAS  PubMed  Google Scholar 

  41. Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface Plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110:15666–15675

    CAS  PubMed  Google Scholar 

  42. Tang B, Li J, Hou X, Afrin T, Sun L, Wang X (2013) Colorful and antibacterial silk fiber from anisotropic silver nanoparticles. Ind Eng Chem Res 52:4556–4563

    CAS  Google Scholar 

  43. Ghosh PR, Fawcett D, Sharma SB, Poinern GEJ (2017) Production of high-value nanoparticles via biogenic processes using aquacultural and horticultural food waste. Materials 10:852

    PubMed Central  Google Scholar 

  44. Molina-Calle M, Priego-Capote F, Luque de Castro MD (2017) Characterization of stevia leaves by LC-QTOF MS/MS analysis of polar and non-polar extracts. Food Chem 219:329–338

    CAS  PubMed  Google Scholar 

  45. Lemus-Mondaca R, Vega-Gálvez A, Zura-Bravo L, Ah-Hen K (2012) Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 132:1121–1132

    CAS  PubMed  Google Scholar 

  46. Mashwani ZR, Khan MA, Khan T, Nadhman A (2016) Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv Colloid Interface Sci 234:132–141

    CAS  PubMed  Google Scholar 

  47. Abreu AS, Oliveira M, de Sá A, Rodrigues RM, Cerqueira MA, Vicente AA, Machado AV (2015) Antimicrobial nanostructured starch based films for packaging. Carbohy Polym 129:127–134

    CAS  Google Scholar 

  48. Jinu UU, Rajakumaran S, Senthil-Nathan S, Geetha N, Venkatachalam P (2018) Potential larvicidal activity of silver nanohybrids synthesized using leaf extracts of Cleistanthus collinus (Roxb.) Benth. Ex Hook.f. and Strychnos nux-vomica L. nux-vomica against dengue, Chikungunya and Zika vectors. Physiol Mol Plant Pathol 101:163–171

    CAS  Google Scholar 

  49. Nayak D, Pradhan S, Ashe S, Rauta PR, Nayak B (2015) Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer against epidermoid A431 carcinoma. J Colloid Interface Sci 457:329–338

    CAS  PubMed  Google Scholar 

  50. Patil MP, Singh RD, Koli PB, Patil KT, Jagdale BS, Tipare AR, Kim GD (2018) Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb Pathog 121:184–189

    CAS  PubMed  Google Scholar 

  51. Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43:6046–6051

    CAS  PubMed  Google Scholar 

  52. Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K, Chanvorachote P, Maniratanachote R (2013) Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro 27:330–338

    CAS  PubMed  Google Scholar 

  53. Dasgupta N, Ranjan S, Mishra D, Ramalingam C (2018) Thermal co-reduction engineered silver nanoparticles induce oxidative cell damage in human colon cancer cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Chem Biol Interact 295:109–118

    CAS  PubMed  Google Scholar 

  54. Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of Zebrafish embryos. ACS Nano 1:133–143

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the PRODEP-SEP of Mexico [Grant Number DSA/103.5/15/11097].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Valera-Zaragoza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valera-Zaragoza, M., Huerta-Heredia, A.A., Peña-Rico, M.A. et al. Morphological, structural and cytotoxic behavior of starch/silver nanocomposites with synthesized silver nanoparticles using Stevia rebaudiana extracts. Polym. Bull. 78, 1683–1701 (2021). https://doi.org/10.1007/s00289-020-03184-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03184-6

Keywords

Navigation