Skip to main content
Log in

A two phase field model for tracking vesicle–vesicle adhesion

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A multi-phase-field model for simulating the adhesion between two vesicles is constructed. Two phase field functions are introduced to simulate each of the two vesicles. An energy model is defined which accounts for the elastic bending energy of each vesicle and the contact potential energy between the two vesicles; the vesicle volume and surface area constraints are imposed using a penalty method. Numerical results are provided to verify the efficacy of our model and to provide visual illustrations of the different types of contact. The method can be adjusted to solve endocytosis problems by modifying the bending rigidity coefficients of the two elastic bending energies. The method can also be extended to simulate multi-cell adhesions, one example of which is erythrocyte rouleaux. A comparison with laboratory observations demonstrates the effectiveness of the multi-phase field approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Aland S, Egerer S, Lowengrub J, Voigt A (2014) Diffuse interface models of locally inextensible vesicles in a viscous fluid. J Comput Phys 277:32–47

    Article  MathSciNet  Google Scholar 

  • Ami R, Barshtein G, Zeltser D, Goldberg Y, Shapira I, Roth A, Keren G et al (2001) Parameters of red blood cell aggregation as correlates of the inflammatory state. Am J Physiol-Heart Circ Physiol 280(5):H1982–H1988

    Google Scholar 

  • Bao W, Du Q (2004) Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow. SIAM J Sci Comput 25(5):1674–1697

    Article  MathSciNet  MATH  Google Scholar 

  • Berndl K, Käs J, Lipowsky R, Sackmann E, Seifert U (1990) Shape transformations of giant vesicles: extreme sensitivity to bilayer asymmetry. EPL (Europhys Lett) 13(7):659

    Article  Google Scholar 

  • Brakke K (1992) The surface evolver. Exp Math 1(2):141–165

    Article  MathSciNet  MATH  Google Scholar 

  • Canham P (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26(1):61–81

    Article  Google Scholar 

  • Cao S, Wei G, Chen J (2011) Transformation of an oblate-shaped vesicle induced by an adhering spherical particle. Phys Rev E 84(5):050901

    Article  Google Scholar 

  • Chen L (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32(1):113–140

    Article  Google Scholar 

  • Chien S (1976) Electrochemical interactions between erythrocyte surfaces. Thromb Res 8:189–202

    Article  Google Scholar 

  • Chien S, Jan K (1973) Ultrastructural basis of the mechanism of rouleaux formation. Microvasc Res 5(2):155–166

    Article  MathSciNet  Google Scholar 

  • Chien S, Sung L, Kim S, Burke A, Usami S (1977) Determination of aggregation force in rouleaux by fluid mechanical technique. Microvasc Res 13(3):327–333

    Article  Google Scholar 

  • Chien S, Sung L, Simchon S, Lee M (1983) Energy balance in red cell interactions. Anne N Y Acad Sci 416(1):190–206

    Article  Google Scholar 

  • Deuling H, Helfrich W (1976) Red blood cell shapes as explained on the basis of curvature elasticity. Biophys J 16(8):861–868

    Article  Google Scholar 

  • Döbereiner H, Käs J, Noppl D, Sprenger I, Sackmann E (1993) Budding and fission of vesicles. Biophys J 65(4):1396–1403

    Article  Google Scholar 

  • Döbereiner H, Evans E, Seifert U, Wortis M (1995) Spinodal fluctuations of budding vesicles. Phys Rev Lett 75(18):3360

    Article  Google Scholar 

  • Du Q, Liu C, Wang X (2004) A phase-field approach in the numerical study of the elastic bending energy for vesicle membranes. J Comput Phys 198(2):450–468

    Article  MathSciNet  MATH  Google Scholar 

  • Du Q, Liu C, Ryham R, Wang X (2005a) A phase-field formulation of the Willmore problem. Nonlinearity 18(3):1249

  • Du Q, Liu C, Ryham R, Wang X (2005b) Modeling the spontaneous curvature effects in static cell membrane deformations by a phase-field formulation. Energy 7:8

  • Du Q, Liu C, Wang X (2006) Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J Comput Phys 212(2):757–777

    Article  MathSciNet  MATH  Google Scholar 

  • Du Q, Liu C, Ryham R, Wang X (2009) Energetic variational approaches in modeling vesicle and fluid interactions. Phys D Nonlinear Phenom 238(9):923–930

    Article  MathSciNet  MATH  Google Scholar 

  • Evans E (1980) Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. Biophys J 30(2):265–284

    Article  Google Scholar 

  • Farge E, Devaux P (1992) Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. Biophys J 61(2):347–357

    Article  Google Scholar 

  • Fedosov D, Gompper G (2012) Mesoscale simulations of human blood flow: from red blood cell elasticity and interactions to blood rheology. In: NIC symposium 2012: proceedings; 25 years HLRZ, vol 45. Forschungszentrum Jülich

  • Goldstein J, Anderson R, Brown M (1979) Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279(5715):679–685

    Article  Google Scholar 

  • Gu R, Wang X, Gunzburger M (2014) Simulating vesicle–substrate adhesion using two phase-field functions. J Comput Phys 275:626–641

    Article  MathSciNet  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z fr Naturforschung Teil C Biochem Biophys Biol Virol 28(11):693

    Google Scholar 

  • Hu Z, Wise SM, Wang C, Lowengrub J (2009) Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation. J Comput Phys 228(15):5323–5339

    Article  MathSciNet  MATH  Google Scholar 

  • Kim J, Lowengrub J (2005) Phase field modeling and simulation of three-phase flows. Interfaces Free Bound 7(4):435

    Article  MathSciNet  MATH  Google Scholar 

  • Lipowsky R, Sackmann E (1995) Structure and dynamics of membranes: I. From cells to vesicles/II. Generic and specific interactions, vol 1. Elsevier

  • McWhirter J, Noguchi H, Gompper G (2009) Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc Natl Acad Sci 106(15):6039–6043

    Article  Google Scholar 

  • Miao L, Seifert U, Wortis M, Döbereiner H (1994) Budding transitions of fluid-bilayer vesicles: the effect of area-difference elasticity. Phys Rev E 49(6):5389

    Article  Google Scholar 

  • Mukherjee S, Ghosh R, Maxfield F (1997) Endocytosis. Physiol Rev 77(3):759–803

    Google Scholar 

  • Nalluri S, Ravoo B (2010) Light-responsive molecular recognition and adhesion of vesicles. Angew Chem Int Ed 49(31):5371–5374

    Article  Google Scholar 

  • Obiefuna P (1991) Rouleaux formation in sickle cell traits. J Trop Med Hyg 94(1):42

    Google Scholar 

  • Seifert U, Berndl K, Lipowsky R (1991) Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayer-coupling models. Phys Rev A 44(2):1182

    Article  Google Scholar 

  • Sengupta K, Limozin L (2010) Adhesion of soft membranes controlled by tension and interfacial polymers. Phys Rev Lett 104(8):088101

    Article  Google Scholar 

  • Shen J, Yang X (2010a) A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J Sci Comput 32(3):1159–1179

  • Shen J, Yang X (2010b) Energy stable schemes for Cahn–Hilliard phase-field model of two-phase incompressible flows. Chin Ann Math Ser B 31(5):743–758

  • Silverstein S, Steinman R, Cohn Z (1977) Endocytosis. Annu Rev Biochem 46(1):669–722

    Article  Google Scholar 

  • Skalak R, Chien S (1983) Theoretical models of rouleau formation and disaggregation. Ann N Y Acad Sci 416(1):138–148

    Article  Google Scholar 

  • Skalak R, Zarda P, Jan K, Chien S (1981) Mechanics of rouleau formation. Biophys J 35(3):771–781

    Article  Google Scholar 

  • Steinbach I (2009) Phase-field models in materials science. Model Simul Mater Sci Eng 17(7):073001

    Article  MathSciNet  Google Scholar 

  • Svetina S, Žekš B (1989) Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur Biophys J 17(2):101–111

  • Svetina S, Žekš B (2002) Shape behavior of lipid vesicles as the basis of some cellular processes. Anat Rec 268(3):215–225

  • Svetina S, Ziherl P (2008) Morphology of small aggregates of red blood cells. Bioelectrochemistry 73(2):84–91

    Article  Google Scholar 

  • Voskuhl J, Ravoo B (2009) Molecular recognition of bilayer vesicles. Chem Soc Rev 38(2):495–505

    Article  Google Scholar 

  • Wagner C, Steffen P, Svetina S (2013) Aggregation of red blood cells: from rouleaux to clot formation. Comptes Rendus Phys 14(6):459–469

  • Wang X (2005) Phase field models and simulations of vesicle bio-membranes. Diss., The Pennsylvania State University, State College

  • Wang X (2008) Asymptotic analysis of phase field formulations of bending elasticity models. SIAM J Math Anal 39(5):1367–1401

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Du Q (2008) Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J Math Biol 56(3):347–371

    Article  MathSciNet  MATH  Google Scholar 

  • Wang T, Xing Z (2011) On the numerical simulation of the dissociation of red blood cell aggregates. In: 2011 4th international congress on image and signal processing (CISP), vol 1. IEEE

  • Wang T, Pan T, Xing Z, Glowinski R (2009) Numerical simulation of rheology of red blood cell rouleaux in microchannels. Phys Rev E 79(4):041916

    Article  Google Scholar 

  • Wang T, Xing Z, Xing D (2013) Structure-induced dynamics of erythrocyte aggregates by microscale simulation. J Appl Math 2013:1–13. doi:10.1155/2013/409387

  • Warren J, Boettinger W (1995) Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metall et Mater 43(2):689–703

    Article  Google Scholar 

  • Wautier J, Paton R, Wautier M, Pintigny D, Abadie E, Passa P, Caen J (1981) Increased adhesion of erythrocytes to endothelial cells in diabetes mellitus and its relation to vascular complications. N Engl J Med 305(5):237–242

    Article  Google Scholar 

  • Wise S, Wang C, Lowengrub J (2009) An energy-stable and convergent finite-difference scheme for the phase-field crystal equation. SIAM J Numer Anal 47(3):2269–2288

    Article  MathSciNet  MATH  Google Scholar 

  • Wortis M, Mukhopadhyay R (2002) Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayercouple hypothesis from membrane mechanics. Proc Natl Acad Sci 99(26):16766–16769

    Article  Google Scholar 

  • Wun T, Paglieroni T, Field C, Welborn J, Cheung A, Walker N, Tablin F (1999) Platelet–erythrocyte adhesion in sickle cell disease. J Investig Med Off Publ Am Fed Clin Res 47(3):121–127

    Google Scholar 

  • Yang X, Feng J, Liu C, Shen J (2006) Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J Comput Phys 218(1):417–428

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Johnson P, Popel AS (2009) Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvasc Res 77(3):265–272

    Article  Google Scholar 

  • Zhao Y, Du Q (2011) Diffuse interface model of multicomponent vesicle adhesion and fusion. Phys Rev E 84(1):011903

    Article  Google Scholar 

  • Ziherl P (2007) Aggregates of two-dimensional vesicles: rouleaux, sheets, and convergent extension. Phys Rev Lett 99(12):128102

    Article  Google Scholar 

  • Ziherl P, Svetina S (2007) Flat and sigmoidally curved contact zones in vesicle–vesicle adhesion. Proc Natl Acad Sci 104(3):761–765

    Article  Google Scholar 

  • Ziherl P, Svetina S (2008) Membrane elasticity molds aggregates of simple cells. Soft Matter 4(10):1937–1942

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, R., Wang, X. & Gunzburger, M. A two phase field model for tracking vesicle–vesicle adhesion. J. Math. Biol. 73, 1293–1319 (2016). https://doi.org/10.1007/s00285-016-0994-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-016-0994-4

Keywords

Mathematics Subject Classification

Navigation