Skip to main content
Log in

Geometry and topology of parameter space: investigating measures of robustness in regulatory networks

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The concept of robustness of regulatory networks has been closely related to the nature of the interactions among genes, and the capability of pattern maintenance or reproducibility. Defining this robustness property is a challenging task, but mathematical models have often associated it to the volume of the space of admissible parameters. Not only the volume of the space but also its topology and geometry contain information on essential aspects of the network, including feasible pathways, switching between two parallel pathways or distinct/disconnected active regions of parameters. A method is presented here to characterize the space of admissible parameters, by writing it as a semi-algebraic set, and then theoretically analyzing its topology and geometry, as well as volume. This method provides a more objective and complete measure of the robustness of a developmental module. As a detailed case study, the segment polarity gene network is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397: 168–171

    Article  Google Scholar 

  2. Little JW, Shepley DP (1999) Robustness of a gene regulatory circuit. EMBO J 18: 4299–4307

    Article  Google Scholar 

  3. von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network is a robust developmental module. Nature 406: 188–192

    Article  Google Scholar 

  4. Kim J, Bates DG, Postlethwaite I, Ma L, Iglesias P (2006) Robustness analysis of biochemical network models. IEE Proc Syst Biol 153: 96–104

    Article  Google Scholar 

  5. Savageau MA (1971) Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems. Nature 229: 542–544

    Article  Google Scholar 

  6. Heinrich R, Schuster S (1996) The regulation of cellular systems. Chapman & Hall, New York

    MATH  Google Scholar 

  7. Sanson B (2001) Generating patterns from fields of cells. Examples from Drosophila segmentation. EMBO Rep 21: 1083–1088

    Article  Google Scholar 

  8. Ingolia NT (2004) Topology and robustness in the Drosophila segment polarity network. PLoS Biol 2: 0805–0815

    Article  Google Scholar 

  9. Albert R, Othmer HG (2003) The topology of the regulatory interactions predicts the expression pattern of the Drosophila segment polarity genes. J Theor Biol 223: 1–18

    Article  MathSciNet  Google Scholar 

  10. Umulis D, O’Connor MB, Othmer H (2007) Robustness of embryonic spatial patterning in Drosophila melanogaster. Curr Top Dev Biol 81: 65–111

    Article  Google Scholar 

  11. Chaves M, Albert R, Sontag ED (2005) Robustness and fragility of boolean models for genetic regulatory networks. J Theor Biol 235: 431–449

    Article  MathSciNet  Google Scholar 

  12. Chaves M, Sontag ED, Albert R (2006) Methods of robustness analysis for boolean models of gene control networks. IEE Proc Syst Biol 153: 154–167

    Article  Google Scholar 

  13. Ma W, Lai L, Ouyang Q, Tang C (2006) Robustness and modular design of the drosophila segment polarity network. Mol Syst Biol 2: 70

    Article  Google Scholar 

  14. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 3(10): e189+

    Article  MathSciNet  Google Scholar 

  15. Dayarian A, Chaves M, Sengupta A, Sontag ED (2008) Shape, size and robustness: feasible regions in the parameter space of biochemical networks. PLoS Comput Biol (in press)

  16. Sengupta AM, Djordjevic M, Shraiman BI (2002) Specificity and robustness in transcription control network. Proc Natl Acad Sci USA 99: 2072–2077

    Article  Google Scholar 

  17. Hooper JE, Scott MP (1992) The molecular genetic basis of positional information in insect segments. In: Hennig W (eds) Early embryonic development of animals. Springer, Berlin, pp 1–49

    Google Scholar 

  18. Hidalgo A, Ingham PW (1990) Cell patterning in the Drosophila segment: spatial regulation of the segment polarity gene patched. Development 110: 291–301

    Google Scholar 

  19. Eaton S, Kornberg TB (1990) Repression of ci-d in posterior compartments of drosophila by engrailed. Genes Dev 4: 1068–1077

    Article  Google Scholar 

  20. von Dassow G, Odell GM (2002) Design and constraints of the drosophila segment polarity modude: robust spatial patterning emerges from intertwined cell state switches. J Exp Zool (Mol Dev Evol) 294: 179–215

    Article  Google Scholar 

  21. Swantek D, Gergen JP (2004) Ftz modulates runt-dependent activation and repression of segment -polarity gene transcription. Development 131: 2281–2290

    Article  Google Scholar 

  22. Collins GE (1975) Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Second GI Conference on Automata Theory and Formal Languages, Kaiserslauten. Lecture Notes Comp. Sci., vol 33 Springer, Heidelberg, pp 134–183

  23. Arnon DS, Collins GE, McCallum S (1984) Cylindrical algebraic decomposition I: the basic algorithm. SIAM J Comput 13: 865–877

    Article  MathSciNet  Google Scholar 

  24. Brown C, Hong, et al. H QEPAD. http://www.cs.usna.edu/qepcad/B/QEPCAD.html

  25. Collins GE, Hong H (1991) Partial cylindrical algebraic decomposition in quantifier elimination. J Symb Comput 12: 299–328

    Article  MATH  MathSciNet  Google Scholar 

  26. Wolfram S (1998) The Mathematica Book, 4th edn. Wolfram Media, Cambridge University Press, London

    Google Scholar 

  27. Nešić D, Mareels IMY, Glad ST, Jirstrand M (2001) Software for control system analysis and design, symbol manipulation. In: Webster J (eds) Encyclopedia of electrical and electronics engineering. Wiley, London

    Google Scholar 

  28. Lafferriere G, Pappas G, Yovine S (2001) Symbolic reachability computation for families of linear vector fields. J Symb Comput 32: 231–253

    Article  MATH  MathSciNet  Google Scholar 

  29. Ghosh R, Tomlin CJ (2004) Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modeling: Delta-notch protein signaling. IEE Trans Syst Biol 1: 170–183

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo D. Sontag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaves, M., Sengupta, A. & Sontag, E.D. Geometry and topology of parameter space: investigating measures of robustness in regulatory networks. J. Math. Biol. 59, 315–358 (2009). https://doi.org/10.1007/s00285-008-0230-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0230-y

Mathematics Subject Classification (2000)

Navigation