Skip to main content

Advertisement

Log in

Effects of Different Carbon Sources on the Growth, Fatty Acids Production, and Expression of Three Desaturase Genes of Mortierella alpina ATCC 16266

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

On the molecular and biochemical levels, the effects of different carbon sources on biomass production, fatty acid biosynthesis, and gene expression of three desaturases were investigated in Mortierella alpina ATCC 16266, at a stationary phase, which is an important filamentous fungus capable of producing various polyunsaturated fatty acids (PUFAs). The maximum mycelial biomass was achieved using sucrose as carbon source. However, the highest productivity of total lipids was shown to be no biomass associated. In addition, glucose was the preferred carbon source for the expression of three desaturase genes compared to others, but the change at the corresponding fatty acid product's level of these desaturase genes was not in accordance with the change measured at the mRNA level among those carbon sources that we utilized. Significant discrepancies between the mRNA expression and the product abundance may indicate post-transcriptional regulatory mechanisms of these desaturases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Alessandri J, Guesnet P, Vancassel S, Astorg P, Denis I, Langelier B, Aid S, Poumes-Ballihaut C, Champeil-Potokar G, Lavialle M (2004) Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life. Reprod Nutr 44:509–538

    Article  CAS  Google Scholar 

  2. Arts M, Rai H (1997) Effects of enhanced ultraviolet-B radiation on the production of lipid, polysaccharide and protein in three freshwater algal species. Freshw Biol 38:597–610

    Article  CAS  Google Scholar 

  3. Brown M, Hart C, Gazi E, Bagley S, Clarke N (2006) Promotion of prostatic metastatic migration towards human bone marrow stoma by Omega 6 and its inhibition by Omega 3 PUFAs. Brit J Cancer 94:842–853

    Article  PubMed  CAS  Google Scholar 

  4. Chiou S, Su W, Su Y (2001) Optimizing production of polyunsaturated fatty acids in Marchantia polymorpha cell suspension culture. J Biotechnol 85:247–257

    Article  PubMed  CAS  Google Scholar 

  5. Diaz A, Mansilla M, Vila A, de Mendoza D (2002) Membrane topology of the acyl-lipid desaturase from Bacillus subtilis. J Biol Chem 277:48099–48106

    Article  PubMed  CAS  Google Scholar 

  6. Eroshin V, Satroutdinov A, Dedyukhina E, Chistyakova T (2000) Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis. Process Biochem 35:1171–1175

    Article  CAS  Google Scholar 

  7. Griffin T, Gygi S, Ideker T, Rist B, Eng J, Hood L, Aebersold R (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics 1:323–333

    Article  PubMed  CAS  Google Scholar 

  8. Hazel J (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42

    Article  PubMed  CAS  Google Scholar 

  9. Jiang Y, Vasconcelles M, Wretzel S, Light A, Gilooly L, McDaid K, Oh C, Martin C, Goldberg M (2002) Mga2p processing by hypoxia and unsaturated fatty acids in Saccharomyces cerevisiae: impact on LORE-dependent gene expression. Eukaryot Cell 1:481–490

    Article  PubMed  CAS  Google Scholar 

  10. Kawashima H, Akimoto K, Higashiyama K, Fujikawa S, Shimizu S (2000) Industrial production of dihomo-γ-linolenic acid by a Δ5 desaturase-defective mutant of Mortierella alpina 1S–4 fungus. J Am Oil Chem Soc 77:1135–1139

    Article  CAS  Google Scholar 

  11. Kolkman A, Daran-Lapujade P, Fullaondo A, Olsthoorn M, Pronk J, Slijper M, Heck A (2006) Proteome analysis of yeast response to various nutrient limitations. Mol Syst Biol 2:1–16

    Article  Google Scholar 

  12. Makrides M, Neumann M, Byard R, Simmer K, Gibson R (1994) Fatty acid composition of brain, retina, and erythrocytes in breast-and formula-fed infants. Am J Clin Nutr 60:189–194

    PubMed  CAS  Google Scholar 

  13. Martin C, Oh C, Jiang Y (2007) Regulation of long chain unsaturated fatty acid synthesis in yeast. BBA Mol Cell Biol L 1771:271–285

    CAS  Google Scholar 

  14. Nakamura M, Nara T (2002) Gene regulation of mammalian desaturases. Biochem Soc Trans 30:1076–1079

    Article  PubMed  CAS  Google Scholar 

  15. Nakamura M, Nara T (2004) Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr 24:345–376

    Article  PubMed  CAS  Google Scholar 

  16. Ntambi J, Miyazaki M (2004) Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res 43:91–104

    Article  PubMed  CAS  Google Scholar 

  17. Ruenwai R, Cheevadhanarak S, Rachdawong S, Tanticharoen M, Laoteng K (2010) Oxygen-induced expression of 6-, 9- and 12-desaturase genes modulates fatty acid composition in Mucor rouxii. Appl Microbiol Biotechnol 86:327–334

    Article  PubMed  CAS  Google Scholar 

  18. Sargent J, Bell J, Bell M, Henderson R, Tocher D (1995) Requirement criteria for essential fatty acids. J Appl Ichthyol 11:183–198

    Article  CAS  Google Scholar 

  19. Schuchardt J, Huss M, Stauss-Grabo M, Hahn A (2010) Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behaviour of children. Eur J Pediatr 169:149–164

    Article  PubMed  CAS  Google Scholar 

  20. Schujman G, Guerin M, Buschiazzo A, Schaeffer F, Llarrull L, Reh G, Vila A, Alzari P, De Mendoza D (2006) Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. EMBO J 25(17):4074–4083

    Article  PubMed  CAS  Google Scholar 

  21. Schujman G, Mendoza D (2005) Transcriptional control of membrane lipid synthesis in bacteria. Curr Opin Microbiol 8:149–153

    Article  PubMed  CAS  Google Scholar 

  22. Vasconcelles M, Jiang Y, McDaid K, Gilooly L, Wretzel S, Porter D, Martin C, Goldberg M (2001) Identification and characterization of a low oxygen response element involved in the hypoxic induction of a family of Saccharomyces cerevisiae genes. J Biol Chem 276:14374–14384

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 30771355), and the National High Technology Research and Development Program of China (863 Program: No. 2007AA10Z189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingchun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, AQ., Zhu, JC., Zhang, B. et al. Effects of Different Carbon Sources on the Growth, Fatty Acids Production, and Expression of Three Desaturase Genes of Mortierella alpina ATCC 16266. Curr Microbiol 62, 1617–1622 (2011). https://doi.org/10.1007/s00284-011-9902-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9902-8

Keywords

Navigation