Skip to main content
Log in

Genetic Discovery in Xylella fastidiosa Through Sequence Analysis of Selected Randomly Amplified Polymorphic DNAs

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Xylella fastidiosa causes many important plant diseases including Pierce’s disease (PD) in grape and almond leaf scorch disease (ALSD). DNA-based methodologies, such as randomly amplified polymorphic DNA (RAPD) analysis, have been playing key roles in genetic information collection of the bacterium. This study further analyzed the nucleotide sequences of selected RAPDs from X. fastidiosa strains in conjunction with the available genome sequence databases and unveiled several previously unknown novel genetic traits. These include a sequence highly similar to those in the phage family of Podoviridae. Genome comparisons among X. fastidiosa strains suggested that the “phage” is currently active. Two other RAPDs were also related to horizontal gene transfer: one was part of a broadly distributed cryptic plasmid and the other was associated with conjugal transfer. One RAPD inferred a genomic rearrangement event among X. fastidiosa PD strains and another identified a single nucleotide polymorphism of evolutionary value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Literature Cited

  1. R Albibi J Chen O Lamikanra D Banks RL Jarret BJ Smith (1998) ArticleTitleRAPD fingerprinting Xylella fastidiosa Pierce’s disease strains isolated from a vineyard in North Florida FEMS Microbiol Lett 165 347–352

    Google Scholar 

  2. D Banks R Albibi J Chen O Lamikanra RL Jarret BJ Smith (1999) ArticleTitleSpecific detection of Xylella fastidiosa Pierce’s disease strains Curr Microbiol 39 85–88 Occurrence Handle10.1007/s002849900423 Occurrence Handle1:CAS:528:DyaK1MXksVOitb0%3D Occurrence Handle10398832

    Article  CAS  PubMed  Google Scholar 

  3. A Bhattacharyya S Stilwagen G Reznik H Feil WS Feil I Anderson A Bernal M D’Souza N Ivanova V Kapatral N Larsen T Los A Lykidis E Jr Selkov SuffixJr TL Walunas A Purcell RA Edwards T Hawkins R Haselkorn R Overbeek NC Kyrpides PF Predki (2002) ArticleTitleDraft sequencing and comparative genomics of Xylella fastidiosa strains reveal novel biological insights Genome Res 12 1556–63

    Google Scholar 

  4. J Chen CJ Chang RL Jarret (1992) ArticleTitlePlasmids from Xylella fastidiosa strains Can J Microbiol 38 993–995

    Google Scholar 

  5. J Chen CJ Chang RL Jarret N Gawel (1992) ArticleTitleGenetic variation among Xylella fastidiosa strains Phytopathology 82 973–977

    Google Scholar 

  6. J Chen O Lamikanra CJ Chang DL Hopkins (1995) ArticleTitleRandomly amplified polymorphic DNA analysis of Xylella fastidiosa Pierce’s disease and oak leaf scorch pathotypes Appl Environ Microbiol 61 1688–1690 Occurrence Handle1:CAS:528:DyaK2MXlsFyksb8%3D Occurrence Handle7646005

    CAS  PubMed  Google Scholar 

  7. J Chen D Banks RL Jarret CJ Chang BJ Smith (2000) ArticleTitleUse of 16S rDNA sequences as signature characters to identify Xylella fastidiosa Curr Microbiol 40 29–33

    Google Scholar 

  8. J Chen R Jarret X Qin JS Hartung D Banks CJ Chang DL Hopkins (2000) ArticleTitle16S rDNA analysis of Xylella fastidiosa strains Syst Appl Microbiol 23 349–354

    Google Scholar 

  9. M Hendson AH Purcell D Chen C Smart M Guilhabert B Kirkpatrick (2001) ArticleTitleGenetic diversity of Pierce’s disease strains and other pathotypes of Xylella fastidiosa Appl Environ Microbiol 67 895–903

    Google Scholar 

  10. BL Hill AH Purcell (1995) ArticleTitleAcquisition and retention of Xylella fastidiosa by an efficient vector, Graphocephala atropunctata Phytopathology 85 209–212

    Google Scholar 

  11. DL Hopkins (1989) ArticleTitleXylella fastidiosa: Xylem-limited bacterial pathogen of plants Annu Rev Phytopathol 27 271–290 Occurrence Handle10.1146/annurev.py.27.090189.001415

    Article  Google Scholar 

  12. D Hopkins (2001) Xylella fastidiosa NW Schaad JB Jones W Chun (Eds) Laboratory guide for identification of plant pathogenic bacteria APS Press St. Paul, MN 201–213

    Google Scholar 

  13. MV Marques AM da Silva SL Gomes (2001) ArticleTitleGenetic organization of plasmid pXF51 from the plant pathogen Xylella fastidiosa Plasmid 45 184–199

    Google Scholar 

  14. LR Nunes YB Rosato NH Muto GM Yanai VS da Silva DB Leite ER Goncalves AA Souza Particlede HD Coletta-Filho MA Machado SA Lopes RC Oliveira Particlede (2003) ArticleTitleMicroarray analyses of Xylella fastidiosa provide evidence of coordinated transcription control of laterally transferred elements Genome Res 13 570–578

    Google Scholar 

  15. MR Pooler JS Hartung (1995) ArticleTitleGenetic relationships among strains of Xylella fastidiosa from RAPD-PCR data Curr Microbiol 31 134–137 Occurrence Handle10.1007/BF00294290 Occurrence Handle1:CAS:528:DyaK2MXmsFOju7c%3D Occurrence Handle7606188

    Article  CAS  PubMed  Google Scholar 

  16. MR Pooler JS Hartung (1995) ArticleTitleSpecific PCR detection and identification of Xylella fastidiosa strains causing citrus variegated chlorosis Curr Microbiol 31 377–381

    Google Scholar 

  17. MR Pooler JS Hartung RG Fenton (1997) ArticleTitleSequence analysis of a 1296-nucleotide plasmid from Xylella fastidiosa FEMS Microbiol Lett 155 217–222

    Google Scholar 

  18. YB Rosato JR Neto VS Miranda EF Carlos GP Manfio (1998) ArticleTitleDiversity of a Xylella fastidiosa population isolated from Citrus sinensis affected by citrus variegated chlorosis in Brazil Syst Appl Microbiol 21 593–598

    Google Scholar 

  19. AJG Simpson FC Reinach P Arruda et al. (2000) ArticleTitleThe genome sequence of the plant pathogen Xylella fastidiosa Nature 406 151–157

    Google Scholar 

  20. JD Thompson DG Higgins TJ Gibson (1994) ArticleTitleCLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic Acids Res 22 4673–4680 Occurrence Handle1:CAS:528:DyaK2MXitlSgu74%3D Occurrence Handle7984417

    CAS  PubMed  Google Scholar 

  21. MA Sluys ParticleVan MC Oliveira Particlede CB Monteiro-Vitorello et al. (2003) ArticleTitleComparative analyses of the complete genome sequences of Pierce’s disease and citrus variegated chlorosis strains of Xylella fastidiosa J Bacteriol 185 1018–1026

    Google Scholar 

  22. KP Williams (2002) ArticleTitleSurvey and summary: Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies Nucleic Acids Res 30 866–875

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Civerolo, E.L., Jarret, R.L. et al. Genetic Discovery in Xylella fastidiosa Through Sequence Analysis of Selected Randomly Amplified Polymorphic DNAs. Curr Microbiol 50, 78–83 (2005). https://doi.org/10.1007/s00284-004-4412-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-004-4412-6

Keywords

Navigation