Skip to main content

Advertisement

Log in

TRP functions in the broncho-pulmonary system

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The current understanding of the role of transient receptor potential (TRP) channels in the airways and lung was initially based on the localization of a series of such channels in a subset of sensory nerve fibers of the respiratory tract. Soon after, TRP channel expression and function have been identified in respiratory nonneuronal cells. In these two locations, TRPs regulate physiological processes aimed at integrating different stimuli to maintain homeostasis and to react to harmful agents and tissue injury by building up inflammatory responses and repair processes. There is no doubt that TRPs localized in the sensory network contribute to airway neurogenic inflammation, and emerging evidence underlines the role of nonneuronal TRPs in orchestrating inflammation and repair in the respiratory tract. However, recent basic and clinical studies have offered clues regarding the contribution of neuronal and nonneuronal TRPs in the mechanism of asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cough, and other respiratory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    Article  CAS  PubMed  Google Scholar 

  2. Clapham DE et al (2003) International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol Rev 55:591–596

    Article  PubMed  Google Scholar 

  3. Nilius B (2007) Transient receptor potential (TRP) cation channels: rewarding unique proteins. Bull Mem Acad R Med Belg 162:244–253

    PubMed  Google Scholar 

  4. Paulsen CE et al (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 525:552

    Article  CAS  PubMed  Google Scholar 

  5. Liao M et al (2014) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112

    Article  Google Scholar 

  6. Gaudet R (2008) A primer on ankyrin repeat function in TRP channels and beyond. Mol Biosyst 4:372–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clapham DE (1995) Calcium signaling. Cell 80:259–268

    Article  CAS  PubMed  Google Scholar 

  8. Vriens J et al (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101:396–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yao X, Kwan HY, Huang Y (2005) Regulation of TRP channels by phosphorylation. Neurosignals 14:273–280

    Article  CAS  PubMed  Google Scholar 

  10. Story GM et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  CAS  PubMed  Google Scholar 

  11. Szallasi A et al (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 6:357–372

    Article  CAS  PubMed  Google Scholar 

  12. Guler AD et al (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414

    CAS  PubMed  Google Scholar 

  13. Bhattacharya MR et al (2008) Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons. Proc Natl Acad Sci U S A 105:20015–20020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Geppetti P, Holzer P (1996) Neurogenic inflammation. CRC Press, Boca Raton, pp 1–256

    Google Scholar 

  15. Benemei S et al (2014) The TRPA1 channel in migraine mechanism and treatment. Br J Pharmacol 171:2552–2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fahy JV et al (1995) Effect of an NK1 receptor antagonist (CP-99,994) on hypertonic saline-induced bronchoconstriction and cough in male asthmatic subjects. Am J Respir Crit Care Med 152:879–884

    Article  CAS  PubMed  Google Scholar 

  17. Kraan J, Vink-Klooster H, Postma DS (2001) The NK-2 receptor antagonist SR 48968C does not improve adenosine. Clin Exp Allergy 31:274–278

    Article  CAS  PubMed  Google Scholar 

  18. Ichinose M et al (1996) A neurokinin 1-receptor antagonist improves exercise-induced airway narrowing in asthmatic patients. Am J Respir Crit Care Med 153:936–941

    Article  CAS  PubMed  Google Scholar 

  19. Mahler DA et al (2014) Antagonism of substance P and perception of breathlessness in patients with chronic obstructive pulmonary disease. Respir Physiol Neurobiol 196:1–7

    Article  CAS  PubMed  Google Scholar 

  20. Julius D (2013) TRP channels and pain. Annu Rev Cell Dev Biol 29:355–384

    Article  CAS  PubMed  Google Scholar 

  21. Tominaga M et al (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  CAS  PubMed  Google Scholar 

  22. Szallasi A, Blumberg PM (1999) Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–212

    CAS  PubMed  Google Scholar 

  23. Bautista DM et al (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    Article  CAS  PubMed  Google Scholar 

  24. Grace M et al (2012) Transient receptor potential channels mediate the tussive response to prostaglandin E2 and bradykinin. Thorax 67:891–900

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moriyama T et al (2005) Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 1:3

    Article  PubMed  PubMed Central  Google Scholar 

  26. Amadesi S et al (2004) Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci 24:4300–4312

    Article  CAS  PubMed  Google Scholar 

  27. Gatti R et al (1985) (2006). Protease-activated receptor-2 activation exaggerates TRPV1-mediated cough in guinea pigs. J Appl Physiol 101:506–511

    Article  Google Scholar 

  28. Szolcsanyi J (2014) Capsaicin and sensory neurones: a historical perspective. Prog Drug Res 68:1–37

    CAS  PubMed  Google Scholar 

  29. Krarup AL et al (2011) Randomised clinical trial: the efficacy of a transient receptor potential vanilloid 1 antagonist AZD1386 in human oesophageal pain. Aliment Pharmacol Ther 33:1113–1122

    Article  CAS  PubMed  Google Scholar 

  30. Rowbotham MC et al (2011) Oral and cutaneous thermosensory profile of selective TRPV1 inhibition by ABT-102 in a randomized healthy volunteer trial. Pain 152:1192–1200

    Article  CAS  PubMed  Google Scholar 

  31. Bandell M et al (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    Article  CAS  PubMed  Google Scholar 

  32. Jordt SE et al (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  CAS  PubMed  Google Scholar 

  33. Bautista DM et al (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A 102:12248–12252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karashima Y et al (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci U S A 106:1273–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Trevisan G et al (2013) Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res 73:3120–3131

    Article  CAS  PubMed  Google Scholar 

  36. Nassini R et al (2011) Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 152:1621–1631

    Article  CAS  PubMed  Google Scholar 

  37. Macpherson LJ et al (2007) An ion channel essential for sensing chemical damage. J Neurosci 27:11412–11415

    Article  CAS  PubMed  Google Scholar 

  38. Wang YY et al (2008) The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J Biol Chem 283:32691–32703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hinman A et al (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 103:19564–19568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Garcia-Elias A et al (2014) The TRPV4 channel. Handb Exp Pharmacol 222:293–319

    Article  CAS  PubMed  Google Scholar 

  41. Kim YS et al (2012) Expression of transient receptor potential ankyrin 1 in human dental pulp. J Endod 38:1087–1092

    Article  PubMed  Google Scholar 

  42. McGarvey LP et al (2014) Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. J Allergy Clin Immunol 133(704–12), e4

    PubMed  Google Scholar 

  43. Nassini R et al (2012) Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation. PLoS One 7, e42454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin AH et al (2015) Lung epithelial TRPA1 transduces the extracellular ROS into transcriptional regulation of lung inflammation induced by cigarette smoke: the role of influxed Ca(2)(+). Mediat Inflamm 2015:148367

    Google Scholar 

  45. Mukhopadhyay I et al (2011) Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J Recept Signal Transduct Res 31:350–358

    Article  CAS  PubMed  Google Scholar 

  46. Nassini R et al (2015) The TRPA1 channel mediates the analgesic action of dipyrone and pyrazolone derivatives. Br J Pharmacol 172:3397–3411

    Article  CAS  PubMed  Google Scholar 

  47. Jia Y et al (2004) Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 287:L272–L278

    Article  CAS  PubMed  Google Scholar 

  48. Alenmyr L (2014) TRPV4-mediated calcium influx and ciliary activity in human native airway epithelial cells. Basic Clin Pharmacol Toxicol 114:210–216

    Article  CAS  PubMed  Google Scholar 

  49. Rahaman SO et al (2014) TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice. J Clin Invest 124:5225–5238

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fernandez-Fernandez JM et al (2008) Functional coupling of TRPV4 cationic channel and large conductance, calcium-dependent potassium channel in human bronchial epithelial cell lines. Pflugers Arch 457:149–159

    Article  CAS  PubMed  Google Scholar 

  51. Jaquemar D, Schenker T, Trueb B (1999) An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem 274:7325–7333

    Article  CAS  PubMed  Google Scholar 

  52. Schaefer EA et al (2013) Stimulation of the chemosensory TRPA1 cation channel by volatile toxic substances promotes cell survival of small cell lung cancer cells. Biochem Pharmacol 85:426–438

    Article  CAS  PubMed  Google Scholar 

  53. Vriens J et al (2004) TRPV channels and modulation by hepatocyte growth factor/scatter factor in human hepatoblastoma (HepG2) cells. Cell Calcium 36:19–28

    Article  CAS  PubMed  Google Scholar 

  54. Watanabe H et al (2008) TRP channel and cardiovascular disease. Pharmacol Ther 118:337–351

    Article  CAS  PubMed  Google Scholar 

  55. Jongejan RC et al (1990) Effects of changes in osmolarity on isolated human airways. J Appl Physiol 68:1568–1575

    CAS  PubMed  Google Scholar 

  56. McAlexander MA et al (2014) Transient receptor potential vanilloid 4 activation constricts the human bronchus via the release of cysteinyl leukotrienes. J Pharmacol Exp Ther 349:118–125

    Article  PubMed  PubMed Central  Google Scholar 

  57. Thorneloe KS et al (2012) An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Transl Med 4, 159ra48

    Article  Google Scholar 

  58. Yin J et al (2008) Negative-feedback loop attenuates hydrostatic lung edema via a cGMP-dependent regulation of transient receptor potential vanilloid 4. Circ Res 102:966–974

    Article  CAS  PubMed  Google Scholar 

  59. Parenti A et al (2015) What does evidence indicate about the role of TRP channels in inflammatory and immune cells? Br J Pharmacol 2015:13392

    Google Scholar 

  60. Bertin S et al (2014) The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4(+) T cells. Nat Immunol 15:1055–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Romano B et al (2013) The cannabinoid TRPA1 agonist cannabichromene inhibits nitric oxide production in macrophages and ameliorates murine colitis. Br J Pharmacol 169:213–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Billeter AT et al (2015) TRPA1 mediates the effects of hypothermia on the monocyte inflammatory response. Surgery 158:646–654

    Article  PubMed  Google Scholar 

  63. Yin J et al (2015) Role of transient receptor potential vanilloid 4 in neutrophil activation and acute lung injury. Am J Respir Cell Mol Biol 2015:29

    Google Scholar 

  64. Geppetti P, Patacchini R, Nassini R (2014) Transient receptor potential channels and occupational exposure. Curr Opin Allergy Clin Immunol 14:77–83

    Article  CAS  PubMed  Google Scholar 

  65. Grace MS et al (2014) Transient receptor potential (TRP) channels in the airway: role in airway disease. Br J Pharmacol 171:2593–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smit LA et al (2012) Transient receptor potential genes, smoking, occupational exposures and cough in adults. Respir Res 13:26

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mattoo H et al (2014) De novo oligoclonal expansions of circulating plasmablasts in active and relapsing IgG4-related disease. J Allergy Clin Immunol 134:679–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lieu TM et al (2012) TRPV1 induction in airway vagal low-threshold mechanosensory neurons by allergen challenge and neurotrophic factors. Am J Physiol Lung Cell Mol Physiol 302:L941–L948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Andre E et al (2009) Transient receptor potential ankyrin receptor 1 is a novel target for pro-tussive agents. Br J Pharmacol 158:1621–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li F et al (2015) Transient receptor potential A1 activation prolongs isoflurane induction latency and impairs respiratory function in mice. Anesthesiology 122:768–775

    Article  CAS  PubMed  Google Scholar 

  71. Matta JA et al (2008) General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc Natl Acad Sci U S A 105:8784–8789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Eilers H et al (2009) Pungent general anesthetics activate transient receptor potential-A1 to produce hyperalgesiaand neurogenic bronchoconstriction. Anesthesiology

  73. Miyamoto T et al (2009) TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PLoS One 4, e7596

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bertrand C, Geppetti P (1996) Tachykinin and kinin receptor antagonists: therapeutic perspectives in allergic airway disease. Trends Pharmacol Sci 17:255–259

    Article  CAS  PubMed  Google Scholar 

  75. Joos GF, Pauwels RA (2001) Tachykinin receptor antagonists: potential in airways diseases. Curr Opin Pharmacol 1:235–241

    Article  CAS  PubMed  Google Scholar 

  76. Shen MY et al (2012) Hypersensitivity of lung vagal C fibers induced by acute intermittent hypoxia in rats: role of reactive oxygen species and TRPA1. Am J Physiol Regul Integr Comp Physiol 303:R1175–R1185

    Article  CAS  PubMed  Google Scholar 

  77. Caceres AI et al (2009) A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci U S A 106:9099–9104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hsu CC et al (2013) Hydrogen sulfide induces hypersensitivity of rat capsaicin-sensitive lung vagal neurons: role of TRPA1 receptors. Am J Physiol Regul Integr Comp Physiol 305:R769–R779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Trankner D et al (2014) Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. Proc Natl Acad Sci U S A 111:11515–11520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Andre E et al (2008) Cigarette smoke-induced neurogenic inflammation is mediated by alpha, beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J Clin Invest 118:2574–2582

    CAS  PubMed  PubMed Central  Google Scholar 

  81. McNamara CR et al (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A 104:13525–13530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bang S et al (2007) Transient receptor potential A1 mediates acetaldehyde-evoked pain sensation. Eur J Neurosci 26:2516–2523

    Article  PubMed  Google Scholar 

  83. Bessac BF et al (2008) TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 118:1899–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sawada Y et al (2008) Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci 27:1131–1142

    Article  PubMed  Google Scholar 

  85. Shapiro D et al (2013) Activation of transient receptor potential ankyrin-1 (TRPA1) in lung cells by wood smoke particulate material. Chem Res Toxicol 26:750–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dicpinigaitis PV et al (2008) Effect of tiotropium on cough reflex sensitivity in acute viral cough. Lung 186:369–374

    Article  PubMed  Google Scholar 

  87. Ruan T et al (2014) Sensitization by pulmonary reactive oxygen species of rat vagal lung C-fibers: the roles of the TRPV1, TRPA1, and P2X receptors. PLoS One 9, e91763

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hamanaka K et al (2007) TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am J Physiol Lung Cell Mol Physiol 293:L923–L932

    Article  CAS  PubMed  Google Scholar 

  89. Balakrishna S et al (2014) TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 307:L158–L172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Raghu G et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824

    Article  PubMed  Google Scholar 

  91. Grinnell F, Ho CH (2002) Transforming growth factor beta stimulates fibroblast-collagen matrix contraction by different mechanisms in mechanically loaded and unloaded matrices. Exp Cell Res 273:248–255

    Article  CAS  PubMed  Google Scholar 

  92. Chapman HA (2004) Disorders of lung matrix remodeling. J Clin Invest 113:148–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Goldenberg NM et al (2015) TRPV4 is required for hypoxic pulmonary vasoconstriction. Anesthesiology 122:1338–1348

    Article  CAS  PubMed  Google Scholar 

  94. Xia Y et al (2013) TRPV4 channel contributes to serotonin-induced pulmonary vasoconstriction and the enhanced vascular reactivity in chronic hypoxic pulmonary hypertension. Am J Physiol Cell Physiol 305:C704–C715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhuang J et al (2015) Prenatal nicotinic exposure augments cardiorespiratory responses to activation of bronchopulmonary C-fibers. Am J Physiol Lung Cell Mol Physiol 308:L922–L930

    Article  PubMed  Google Scholar 

  96. Suresh K et al (2015) Hydrogen peroxide-induced calcium influx in lung microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 309:L1467–L1477

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was supported by a Tuscany Region Grant (Nutraceutica, POFCADT_2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierangelo Geppetti.

Additional information

This article is a contribution to the special issue on the Role of TRP Ion Channels in Physiology and Pathology - Guest Editor: Armen Akopian

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Logu, F., Patacchini, R., Fontana, G. et al. TRP functions in the broncho-pulmonary system. Semin Immunopathol 38, 321–329 (2016). https://doi.org/10.1007/s00281-016-0557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0557-1

Keywords

Navigation