Skip to main content

Advertisement

Log in

Surveillance B lymphocytes and mucosal immunoregulation

  • Original Article
  • Published:
Springer Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Mucosal lymphocyte homeostasis involves the dynamic interaction of enteric microbiota, the intestinal host epithelium, and the mucosal immune system. Dysregulation of mucosal lymphocyte homeostasis results in a variety of intestinal disorders, notably inflammatory bowel diseases like ulcerative colitis and Crohn’s disease. One key cellular component regulating homeostasis are B lymphocytes that reside in gut-associated lymphoid tissue. This compartment includes Peyer’s patches, isolated lymphoid follicles, lamina propria, and mesenteric lymph nodes. Recent data have pointed to two new and exciting aspects of B cells in the gut. First, there has been progress on identification and functional analysis of abundant isolated lymphoid follicle B cells that are key mediators of IgA genesis. Second, several groups have now clarified the functional identification and characterization of immunoregulatory B cells in the gut. This review examines the novel aspects of these B cells, and examines how each plays a role in mediating mucosal homeostasis in this bacteria-laden compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Deplancke B, Gaskins HR (2001) Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr. 73:1131S

  2. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 3:710

    Google Scholar 

  3. Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol. 14:96

    Google Scholar 

  4. Ouellette AJ, Bevins CL (2001) Paneth cell defensins and innate immunity of the small bowel. Inflamm Bowel Dis 7:43

    Google Scholar 

  5. Gewirtz AT, Neish AS, Madara JL (2002) Mechanisms of active intestinal inflammation and potential down-regulation via lipoxins. Adv Exp Med Biol. 507:229

    Google Scholar 

  6. Gewirtz AT, Liu Y, Sitaraman SV, Madara JL (2002) Intestinal epithelial pathobiology: past, present and future. Best Pract Res Clin Gastroenterol 16:851

    Google Scholar 

  7. Madara JL (1997) Review article: pathobiology of neutrophil interactions with intestinal epithelia. Aliment Pharmacol Ther 11 Suppl 3:57

    Google Scholar 

  8. Clark, MA, Jepson MA (2003) Intestinal M cells and their role in bacterial infection. Int J Med Microbiol 293:17

    Google Scholar 

  9. Kucharzik T, Lugering N, Rautenberg K, Lugering A, Schmidt MA, Stoll R, Domschke W (2000) Role of M cells in intestinal barrier function. Ann N Y Acad Sci 915:171

    Google Scholar 

  10. Neutra, MR, Mantis NJ, Kraehenbuhl JP (2001) Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol 2:1004

    Google Scholar 

  11. McCracken VJ, Lorenz RG (2001) The gastrointestinal ecosystem: a precarious alliance among epithelium, immunity and microbiota. Cell Microbiol 3:1

    Google Scholar 

  12. Fagarasan S, Honjo T (2003) Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol 3:63

    Google Scholar 

  13. Lambolez F, Azogui O, Joret AM, Garcia C, Boehmer H von, Di Santo J, Ezine S, Rocha B (2002) Characterization of T cell differentiation in the murine gut. J Exp Med 195:437

  14. Ishikawa H, Saito H, Suzuki K, Oida T, Kanamori Y (1999) New gut associated lymphoid tissue “cryptopatches” breed murine intestinal intraepithelial T cell precursors. Immunol Res 20:243

    Google Scholar 

  15. Saito H, Kanamori Y, Takemori T, Nariuchi H, Kubota E, Takahashi-Iwanaga H, Iwanaga T, Ishikawa H (1998) Generation of intestinal T cells from progenitors residing in gut cryptopatches. Science 280:275

    Google Scholar 

  16. Bendelac A, Bonneville M, Kearney JF (2001) Autoreactivity by design: innate B and T lymphocytes. Nat Rev Immunol 1:177

    Google Scholar 

  17. Benlagha K, Park SH, Guinamard R, Forestier C, Karlsson L, Chang CH, Bendelac A (2004) Mechanisms governing B cell developmental defects in invariant chain-deficient mice. J Immunol 172:2076

    Google Scholar 

  18. Martin F, Kearney JF (2000) B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a “natural immune memory”. Immunol Rev 175:70

    Google Scholar 

  19. Moore MA (2004) Commentary: the role of cell migration in the ontogeny of the lymphoid system. Stem Cells Dev 13:1

    Google Scholar 

  20. Kunkel EJ, Butcher EC (2003) Plasma-cell homing. Nat Rev Immunol 3:822

    Google Scholar 

  21. MacDonald TT (2003) The mucosal immune system. Parasite Immunol 25:235

    Google Scholar 

  22. Nishikawa S, Honda K, Vieira P, Yoshida H (2003) Organogenesis of peripheral lymphoid organs. Immunol Rev 195:72

    Google Scholar 

  23. Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3:331

    Google Scholar 

  24. Moghaddami M, Cummins A, Mayrhofer G (1998) Lymphocyte-filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology 115:1414

    Google Scholar 

  25. Hamada H, Hiroi T, Nishiyama Y, Takahashi H, Masunaga Y, Hachimura S, Kaminogawa S, Takahashi-Iwanaga H, Iwanaga T, Kiyono H, Yamamoto H, Ishikawa H (2002) Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 168:57

    Google Scholar 

  26. Lorenz RG, Chaplin DD, McDonald KG, McDonough JS, Newberry RD (2003) Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin beta receptor, and TNF receptor I function. J Immunol 170:5475

    Google Scholar 

  27. Fagarasan S, Muramatsu M, Suzuki K, Nagaoka H, Hiai H, Honjo T (2002) Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298:1424

    Google Scholar 

  28. Casola S, Otipoby KL, Alimzhanov M, Humme S, Uyttersprot N, Kutok JL, Carroll MC, Rajewsky K (2004) B cell receptor signal strength determines B cell fate. Nat Immunol 5:317

    Google Scholar 

  29. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422:164

    Google Scholar 

  30. Lanning D, Zhu X, Zhai SK, Knight KL (2000) Development of the antibody repertoire in rabbit: gut-associated lymphoid tissue, microbes, and selection. Immunol Rev 175:214

    Google Scholar 

  31. Bos NA, Kimura H, Meeuwsen CG, De Visser H, Hazenberg MP, Wostmann BS, Pleasants JR, Benner R, Marcus DM (1989) Serum immunoglobulin levels and naturally occurring antibodies against carbohydrate antigens in germ-free BALB/c mice fed chemically defined ultrafiltered diet. Eur J Immunol 19:2335

    Google Scholar 

  32. Shikina T, Hiroi T, Iwatani K, Jang MH, Fukuyama S, Tamura M, Kubo T, Ishikawa H, Kiyono H (2004) IgA class switch occurs in the organized nasopharynx- and gut-associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut. J Immunol 172:6259

    Google Scholar 

  33. Cariappa A, Pillai S (2002) Antigen-dependent B-cell development. Curr Opin Immunol 14:241

    Google Scholar 

  34. Cariappa A, Tang M, Parng C, Nebelitskiy E, Carroll M, Georgopoulos K, Pillai S (2001) The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity 14:603

    Google Scholar 

  35. Martin F, Kearney JF (2000) Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity 12:39

    Google Scholar 

  36. Dalwadi H, Wei B, Schrage M, Su TT, Rawlings DJ, Braun J (2003) B cell developmental requirement for the G alpha i2 gene. J Immunol 170:1707

    Google Scholar 

  37. Tsitoura DC, Yeung VP, DeKruyff RH, Umetsu DT (2002) Critical role of B cells in the development of T cell tolerance to aeroallergens. Int Immunol 14:659

    Google Scholar 

  38. Wolf SD, Dittel BN, Hardardottir F, Janeway CA Jr (1996) Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med 184:2271

    Google Scholar 

  39. Gonnella PA, Waldner HP, Weiner HL (2001) B cell-deficient (mu MT) mice have alterations in the cytokine microenvironment of the gut-associated lymphoid tissue (GALT) and a defect in the low dose mechanism of oral tolerance. J Immunol 166:4456

    Google Scholar 

  40. Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK (2002) Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16:219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Braun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velázquez, P., Wei, B. & Braun, J. Surveillance B lymphocytes and mucosal immunoregulation. Springer Semin Immun 26, 453–462 (2005). https://doi.org/10.1007/s00281-004-0189-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-004-0189-8

Keywords

Navigation