Skip to main content

Advertisement

Log in

Plasma and cerebrospinal fluid pharmacokinetics of ABT-888 after oral administration in non-human primates

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

ABT-888 inhibits poly(ADP-ribose) polymerase (PARP) and may enhance the efficacy of chemotherapy and radiation in CNS tumors. We studied the plasma and cerebrospinal fluid (CSF) pharmacokinetics (PK) of ABT-888 in a non-human primate (NHP) model that is highly predictive of human CSF penetration.

Methods

ABT-888, 5 mg/kg, was administered orally to three NHPs. Serial blood and CSF samples were obtained. Plasma and CSF concentrations of ABT-888 were measured using LC/MS/MS, and the resulting concentration versus time data were evaluated using non-compartmental and compartmental PK methods.

Results

The CSF penetration of ABT-888 was 57 ± 7% (mean ± SD). The peak ABT-888 concentration in the plasma was 0.62 ± 0.18 μM. Plasma and CSF AUC0–∞ were 3.7 ± 1.7 and 2.1 ± 0.8 μM h. PARP inhibition in peripheral blood mononuclear cells was evident 2 h after ABT-888 administration.

Conclusion

The CSF penetration of ABT-888 after oral administration was 57%. Plasma and CSF concentrations were in the range that has been shown to inhibit PARP activity in vivo in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albert JM, Cao C, Kim KW, Willey CD, Geng L, Xiao D, Wang H, Sandler A, Johnson DH, Colevas AD, Low J, Rothenberg ML, Lu B (2007) Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res 13:3033–3042

    Article  CAS  PubMed  Google Scholar 

  2. Alderson T (1990) New targets for cancer chemotherapy—poly(ADP-ribosylation) processing and polyisoprene metabolism. Biol Rev Camb Philos Soc 65:623–641

    Article  CAS  PubMed  Google Scholar 

  3. Ame JC, Rolli V, Schreiber V, Niedergang C, Apiou F, Decker P, Muller S, Hoger T, Menissier-de Murcia J, de Murcia G (1999) PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem 274:17860–17868

    Article  CAS  PubMed  Google Scholar 

  4. Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays 26:882–893

    Article  CAS  PubMed  Google Scholar 

  5. Berger NA, Adams JW, Sikorski GW, Petzold SJ, Shearer WT (1978) Synthesis of DNA and poly(adenosine diphosphate ribose) in normal and chronic lymphocytic leukemia lymphocytes. J Clin Invest 62:111–118

    Article  CAS  PubMed  Google Scholar 

  6. Bowman KJ, Newell DR, Calvert AH, Curtin NJ (2001) Differential effects of the poly (ADP-ribose) polymerase (PARP) inhibitor NU1025 on topoisomerase I and II inhibitor cytotoxicity in L1210 cells in vitro. Br J Cancer 84:106–112

    Article  CAS  PubMed  Google Scholar 

  7. Bryant HE, Helleday T (2006) Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res 34:1685–1691

    Article  CAS  PubMed  Google Scholar 

  8. Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S, Durkacz BW, Hostomsky Z, Kumpf RA, Kyle S, Li J, Maegley K, Newell DR, Notarianni E, Stratford IJ, Skalitzky D, Thomas HD, Wang LZ, Webber SE, Williams KJ, Curtin NJ (2004) Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 96:56–67

    Article  CAS  PubMed  Google Scholar 

  9. Cheng CL, Johnson SP, Keir ST, Quinn JA, Ali-Osman F, Szabo C, Li H, Salzman AL, Dolan ME, Modrich P, Bigner DD, Friedman HS (2005) Poly(ADP-ribose) polymerase-1 inhibition reverses temozolomide resistance in a DNA mismatch repair-deficient malignant glioma xenograft. Mol Cancer Ther 4:1364–1368

    Article  CAS  PubMed  Google Scholar 

  10. D’Argenio D (1997) ADAPT II user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. University of Southern California, Los Angeles

    Google Scholar 

  11. Delaney CA, Wang LZ, Kyle S, White AW, Calvert AH, Curtin NJ, Durkacz BW, Hostomsky Z, Newell DR (2000) Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin Cancer Res 6:2860–2867

    CAS  PubMed  Google Scholar 

  12. Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ, Bontcheva-Diaz VD, Cox BF, DeWeese TL, Dillehay LE, Ferguson DC, Ghoreishi-Haack NS, Grimm DR, Guan R, Han EK, Holley-Shanks RR, Hristov B, Idler KB, Jarvis K, Johnson EF, Kleinberg LR, Klinghofer V, Lasko LM, Liu X, Marsh KC, McGonigal TP, Meulbroek JA, Olson AM, Palma JP, Rodriguez LE, Shi Y, Stavropoulos JA, Tsurutani AC, Zhu GD, Rosenberg SH, Giranda VL, Frost DJ (2007) ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 13:2728–2737

    Article  CAS  PubMed  Google Scholar 

  13. Fukushima M, Kuzuya K, Ota K, Ikai K (1981) Poly(ADP-ribose) synthesis in human cervical cancer cell-diagnostic cytological usefulness. Cancer Lett 14:227–236

    Article  CAS  PubMed  Google Scholar 

  14. Graziani G, Szabo C (2005) Clinical perspectives of PARP inhibitors. Pharmacol Res 52:109–118

    Article  CAS  PubMed  Google Scholar 

  15. Hirai K, Ueda K, Hayaishi O (1983) Aberration of poly(adenosine diphosphate-ribose) metabolism in human colon adenomatous polyps and cancers. Cancer Res 43:3441–3446

    CAS  PubMed  Google Scholar 

  16. Kummar S, Kinders R, Gutierrez M, Rubinstein L, Parchment RE, Phillips LR, Low J, Murgo AJ, Tomaszewski JE, Doroshow JH, Working Group NCI (2007) Inhibition of poly (ADP-ribose) polymerase (PARP) by ABT-888 in patients with advanced malignancies: results of a phase 0 trial. J Clin Oncol 25:3518a

    Article  Google Scholar 

  17. Liu X, Palma J, Kinders R, Shi Y, Donawho C, Ellis PA, Rodriguez LE, Colon-Lopez M, Saltarelli M, LeBlond D, Lin CT, Frost DJ, Luo Y, Giranda VL (2008) An enzyme-linked immunosorbent poly(ADP-ribose) polymerase biomarker assay for clinical trials of PARP inhibitors. Anal Biochem 381:240–247

    Article  CAS  PubMed  Google Scholar 

  18. McCully CL, Balis FM, Bacher J, Phillips J, Poplack DG (1990) A rhesus monkey model for continuous infusion of drugs into cerebrospinal fluid. Lab Anim Sci 40:520–525

    CAS  PubMed  Google Scholar 

  19. Miknyoczki SJ, Jones-Bolin S, Pritchard S, Hunter K, Zhao H, Wan W, Ator M, Bihovsky R, Hudkins R, Chatterjee S, Klein-Szanto A, Dionne C, Ruggeri B (2003) Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol Cancer Ther 2:371–382

    CAS  PubMed  Google Scholar 

  20. Miwa M, Masutani M (2007) PolyADP-ribosylation and cancer. Cancer Sci 98:1528–1535

    Article  CAS  PubMed  Google Scholar 

  21. National Research Council (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington

    Google Scholar 

  22. Perrier D, Mayersohn M (1982) Noncompartmental determination of the steady-state volume of distribution for any mode of administration. J Pharm Sci 71:372–373

    Article  CAS  PubMed  Google Scholar 

  23. Plummer ER (2006) Inhibition of poly(ADP-ribose) polymerase in cancer. Curr Opin Pharmacol 6:364–368

    Article  CAS  PubMed  Google Scholar 

  24. Ruscetti T, Lehnert BE, Halbrook J, Le Trong H, Hoekstra MF, Chen DJ, Peterson SR (1998) Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J Biol Chem 273:14461–14467

    Article  CAS  PubMed  Google Scholar 

  25. Satoh MS, Poirier GG, Lindahl T (1993) NAD(+)-dependent repair of damaged DNA by human cell extracts. J Biol Chem 268:5480–5487

    CAS  PubMed  Google Scholar 

  26. Schreiber V, Ame JC, Dolle P, Schultz I, Rinaldi B, Fraulob V, Menissier-de Murcia J, de Murcia G (2002) Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 277:23028–23036

    Article  CAS  PubMed  Google Scholar 

  27. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    Article  CAS  PubMed  Google Scholar 

  28. Shiobara M, Miyazaki M, Ito H, Togawa A, Nakajima N, Nomura F, Morinaga N, Noda M (2001) Enhanced polyadenosine diphosphate-ribosylation in cirrhotic liver and carcinoma tissues in patients with hepatocellular carcinoma. J Gastroenterol Hepatol 16:338–344

    Article  CAS  PubMed  Google Scholar 

  29. Tentori L, Graziani G (2005) Chemopotentiation by PARP inhibitors in cancer therapy. Pharmacol Res 52:25–33

    Article  CAS  PubMed  Google Scholar 

  30. Tentori L, Leonetti C, Scarsella M, D’Amati G, Vergati M, Portarena I, Xu W, Kalish V, Zupi G, Zhang J, Graziani G (2003) Systemic administration of GPI 15427, a novel poly(ADP-ribose) polymerase-1 inhibitor, increases the antitumor activity of temozolomide against intracranial melanoma, glioma, lymphoma. Clin Cancer Res 9:5370–5379

    CAS  PubMed  Google Scholar 

  31. Tomoda T, Kurashige T, Moriki T, Yamamoto H, Fujimoto S, Taniguchi T (1991) Enhanced expression of poly(ADP-ribose) synthetase gene in malignant lymphoma. Am J Hematol 37:223–227

    Article  CAS  PubMed  Google Scholar 

  32. Wharton SB, McNelis U, Bell HS, Whittle IR (2000) Expression of poly(ADP-ribose) polymerase and distribution of poly(ADP-ribosyl)ation in glioblastoma and in a glioma multicellular tumour spheroid model. Neuropathol Appl Neurobiol 26:528–535

    Article  CAS  PubMed  Google Scholar 

  33. Wielckens K, Garbrecht M, Kittler M, Hilz H (1980) ADP-ribosylation of nuclear proteins in normal lymphocytes and in low-grade malignant non-Hodgkin lymphoma cells. Eur J Biochem 104:279–287

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Gaye Jenkins for technical assistance. National Cancer Institute K12 Pediatric Clinical Oncology Research Training Program 5K12CA90433-07 (JA Muscal), Mentored Specialized Clinical Investigator Development Award in Pediatric Pharmacology (PA Thompson), The Childhood Brain Tumor Foundation (JM Su), National Cancer Institute K23 Career Development Award 1K23CA113721 (JM Su).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack M. Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muscal, J.A., Thompson, P.A., Giranda, V.L. et al. Plasma and cerebrospinal fluid pharmacokinetics of ABT-888 after oral administration in non-human primates. Cancer Chemother Pharmacol 65, 419–425 (2010). https://doi.org/10.1007/s00280-009-1044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1044-3

Keywords

Navigation