Skip to main content

Advertisement

Log in

A water soluble prodrug of a novel camptothecin analog is efficacious against breast cancer resistance protein-expressing tumor xenografts

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Identification of a novel topoisomerase I inhibitor which shows superior efficacy and less individual variation than irinotecan hydrochloride (CPT-11).

Methods

A novel camptothecin analog that is effective against breast cancer resistance protein (BCRP)-positive cells was screened, and a water soluble prodrug was generated. Antitumor activity of the prodrug was examined in BCRP-positive and -negative xenografts both as a single agent and in combination with other anti-cancer drugs.

Results

A novel camptothecin analog, CH0793076, was discovered. Because CH0793076 was found to be highly lipophilic, a water soluble prodrug (TP300) was generated. TP300 is stable in an acidic solution but is rapidly converted to CH0793076 under physiological pH conditions such as in sera. This efficient prodrug activation would minimize interpatient differences in pharmacokinetic and toxicity profiles. Unlike CPT-11, TP300 does not exhibit cholinergic interaction or cause acute diarrhea at effective doses. In mouse xenograft models, TP300 showed antitumor activity against both BCRP-positive and -negative xenografts, whereas CPT-11 was less active against BCRP-positive xenografts. In addition, the effective dose range (MTD/ED50) for TP300 was wider than for CPT-11 and TP300 showed additive or synergistic antitumor effects in combination with other anti-cancer drugs such as capecitabine, oxaliplatin, cisplatin, bevacizumab and cetuximab.

Conclusion

It is therefore expected that TP300 will provide an additional treatment option for patients who will undergo chemotherapy with camptothecins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. de Jong FA, de Jonge MJA, Verweij J, Mathijssen RHJ (2006) Role of pharmacogenetics in irinotecan therapy. Cancer Lett 234:90–106

    Article  PubMed  CAS  Google Scholar 

  2. Saunders M, Iveson T (2006) Management of advanced colorectal cancer: state of the art. Br J Cancer 95:131–138

    Article  CAS  PubMed  Google Scholar 

  3. Fuchs C, Mitchell EP, Hoff PM (2006) Irinotecan in the treatment of colorectal cancer. Cancer Treat Rev 32:491–503

    Article  CAS  PubMed  Google Scholar 

  4. Markman M (2005) Topotecan as second-line therapy for ovarian cancer: dosage versus toxicity. Oncologist 10:695–697

    Article  CAS  PubMed  Google Scholar 

  5. Nicum SJ, O’Brien MER (2007) Topotecan for the treatment of small-cell lung cancer. Expert Rev Anticancer Ther 7:795–801

    Article  CAS  PubMed  Google Scholar 

  6. Mathijssen RHJ, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7:2182–2194

    CAS  PubMed  Google Scholar 

  7. Gupta E, Mick R, Ramirez J, Wang X, Lestingi TM, Vokes EE, Ratain MJ (1997) Pharmacokinetic and pharmacodynamic evaluation of the topoisomerase inhibitor irinotecan in cancer patients. J Clin Oncol 15:1502–1510

    CAS  PubMed  Google Scholar 

  8. de Jong FA, Mathijssen RHJ, Xie R, Verweij J, Sparreboom A (2004) Flat-fixed dosing of irinotecan: influence on pharmacokinetic and pharmacodynamic variability. Clin Cancer Res 10:4068–4071

    Article  PubMed  Google Scholar 

  9. Hecht JR (1998) Gastrointestinal toxicity or irinotecan. Oncology 12:72–78

    CAS  PubMed  Google Scholar 

  10. Dodds HM, Rivory LP (1999) The mechanism for the inhibition of acetylcholinesterases by irinotecan (CPT-11). Mol Pharmacol 56:1346–1353

    CAS  PubMed  Google Scholar 

  11. Ando Y, Saka H, Asai G, Sugiura S, Shimokata K, Kamataki T (1998) UGT1A1 genotypes and glucuronidation of SN-38, the active metabolite of irinotecan. Ann Oncol 9:845–847

    Article  CAS  PubMed  Google Scholar 

  12. Iyer L, Hall D, Das S, Mortell MA, Ramírez J, Kim S, Rienzo AD, Ratain MJ (1999) Phenotype–genotype correlation of in vitro SN-38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism. Clin Pharmacol Ther 65:576–582

    Article  CAS  PubMed  Google Scholar 

  13. Ando Y, Ueoka H, Sugiyama T, Ichiki M, Shimokata K, Hasegawa Y (2002) Polymorphisms of UDP-glucuronosyltransferase and pharmacokinetics of irinotecan. Ther Drug Monit 24:111–116

    Article  CAS  PubMed  Google Scholar 

  14. Iyer L, Das S, Janisch L, Wen M, Ramírez J, Karrison T, Fleming GF, Vokes EE, Schilsky RL, Ratain MJ (2002) UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2:43–47

    Article  CAS  PubMed  Google Scholar 

  15. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, Karrison T, Janisch L, Ramírez J, Rudin CM, Vokes EE, Ratain MJ (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22:1382–1388

    Article  CAS  PubMed  Google Scholar 

  16. Marcuello E, Altés A, Menoyo A, del Rio E, Gómez-Pardo M, Baiget M (2004) UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br J Cancer 91:678–682

    CAS  PubMed  Google Scholar 

  17. Kehrer DFS, Sparreboom A, Verweij J, de Bruijn P, Nierop CA, van de Schraaf J, Ruijgrok EJ, de Jonge MJA (2001) Modulation of irinotecan-induced diarrhea by cotreatment with neomycin in cancer patients. Clin Cancer Res 7:1136–1141

    CAS  PubMed  Google Scholar 

  18. Schellens JHM, Maliepaard M, Scheper RJ, Scheffer GL, Jonker JW, Smit JW, Beijnen JH, Schinkel AH (2000) Transport of topoisomerase I inhibitors by the breast cancer resistance protein. Potential clinical implications. Ann NY Acad Sci 922:188–194

    Article  CAS  PubMed  Google Scholar 

  19. Nakatomi K, Yoshikawa M, Oka M, Ikegami Y, Hayasaka S, Sano K, Shiozawa K, Kawabata S, Soda H, Ishikawa T, Tanabe S, Kohno S (2001) Transport of 7-ethyl-10-hydroxycamptothecin (SN-38) by breast cancer resistance protein ABCG2 in human lung cancer cells. Biochem Biophys Res Commun 288:827–832

    Article  CAS  PubMed  Google Scholar 

  20. Beretta GL, Perego P, Zunino F (2006) Mechanisms of cellular resistance to camptothecins. Curr Med Chem 13:3291–3305

    Article  CAS  PubMed  Google Scholar 

  21. Yang CH, Schneider E, Kuo ML, Volk EL, Rocchi E, Chen YC (2000) BCRP/MXR/ABCP expression in topotecan-resistant human breast carcinoma cells. Biochem Pharmacol 60:831–837

    Article  CAS  PubMed  Google Scholar 

  22. Özvegy C, Litman T, Szakács G, Nagy Z, Bates S, Váradi A, Sarkadi B (2001) Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun 285:111–117

    Article  PubMed  CAS  Google Scholar 

  23. Kage K, Tsukahara S, Sugiyama T, Asada S, Ishikawa E, Tsuruo T, Sugimoto Y (2002) Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int J Cancer 97:626–630

    Article  CAS  PubMed  Google Scholar 

  24. Diestra JE, Scheffer GL, Català I, Maliepaard M, Schellens JHM, Scheper RJ, Germà-Lluch JR, Izquierdo MA (2002) Frequent expression of the multi-drug resistance-associated protein BCRP/MXR/ABCP/ABCG2 in human tumours detected by the BXP-21 monoclonal antibody in paraffin-embedded material. J Pathol 198:213–219

    Article  CAS  PubMed  Google Scholar 

  25. Ohwada J, Ozawa S, Kohchi M, Fukuda H, Murasaki C, Suda H, Murata T, Niizuma S, Tsukazaki M, Ori K, Yoshinari K, Itezono Y, Endo M, Ura M, Tanimura H, Miyazaki Y, Kawashima A, Nagao S, Namba E, Ogawa K, Kobayashi K, Okabe H, Umeda I, Shimma N (2009) Synthesis and biological activities of a pH-dependently activated water-soluble prodrug of a novel hexacyclic camptothecin analog. Bioorg Med Chem Lett 19:2772–2776

    Article  CAS  PubMed  Google Scholar 

  26. Teicher BA (2008) Next generation topoisomerase I inhibitors: rationale and biomarker strategies. Biochem Pharmacol 75:1262–1271

    Article  CAS  PubMed  Google Scholar 

  27. Candeil L, Gourdier I, Peyron D, Vezzio N, Copois V, Bibeau F, Orsetti B, Scheffer GL, Ychou M, Khan QA, Pommier Y, Pau B, Martineau P, Del Rio M (2004) ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastases. Int J Cancer 109:848–854

    Article  CAS  PubMed  Google Scholar 

  28. Bunting KD (2002) ABC Transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 20:11–20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank F. Ford for proofreading the manuscript.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisafumi Yamada-Okabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endo, M., Miwa, M., Ura, M. et al. A water soluble prodrug of a novel camptothecin analog is efficacious against breast cancer resistance protein-expressing tumor xenografts. Cancer Chemother Pharmacol 65, 363–371 (2010). https://doi.org/10.1007/s00280-009-1042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1042-5

Keywords

Navigation