Skip to main content

Advertisement

Log in

Myofibroblasts enable invasion of endothelial cells into three-dimensional tumor cell clusters: a novel in vitro tumor model

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

In an effort to study the importance of stromal involvement in angiogenesis, we developed a novel, multicellular model that utilizes three of the primary cell types involved in tumor angiogenesis.

Methods

Fluorescently labeled human microvascular endothelial cells (HMVECs), 10T1/2 cells and myofibroblasts were incubated in the presence of a three-dimensional tumor cell cluster resuspended in collagen and embedded in Matrigel.

Results

HMVECs cultured in the presence of a human SKOV-3 ovarian carcinoma tumor cell cluster, surrounded the tumor cell cluster, while myofibroblasts invaded the cluster, localizing within the tumor cell mass. In contrast, 10T1/2 cells, a pluripotent mouse mesenchymal cell line with pericyte-like properties, did not demonstrate the same invasive phenotype. HMVECs cultured in the presence of myofibroblasts invaded the tumor cell cluster and colocalized with the myofibroblasts as demonstrated by fluorescent microscopy and immunohistochemistry. The angiogenesis inhibitors SU6668 and paclitaxel inhibited stromal invasion, while a broad-spectrum matrix metalloproteinase inhibitor did not.

Conclusions

This model emphasizes the critical interaction between endothelial cells and myofibroblasts and provides a more complete in vitro model for studying angiogenesis and tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–C.
Fig. 3A, B.
Fig. 4A–D.
Fig. 5A–G.

Similar content being viewed by others

References

  1. Adams EF, Newton CJ, Braunsberg H, Shaikh N, Ghilchik M, James VH (1988) Effects of human breast fibroblasts on growth and 17 beta-estradiol dehydrogenase activity of MCF-7 cells in culture. Breast Cancer Res Treat 11:165

    CAS  PubMed  Google Scholar 

  2. Camps JL, Chang SM, Hsu TC, Freeman MR, Hong SJ, Zhau HE, von Eschenbach AC, Chung LW (1990) Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc Natl Acad Sci U S A 87:75

    CAS  PubMed  Google Scholar 

  3. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389

    CAS  PubMed  Google Scholar 

  4. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103

    CAS  PubMed  Google Scholar 

  5. Ehrlich HP, Rajaratnam JB (1990) Cell locomotion forces versus cell contraction forces for collagen lattice contraction: an in vitro model of wound contraction. Tissue Cell 22:407

    CAS  PubMed  Google Scholar 

  6. Elenbaas B, Weinberg RA (2001) Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 264:169

    Article  CAS  PubMed  Google Scholar 

  7. Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Liu Donaher J, Popescu NC, Hahn WC, Weinberg RA (2001) Human breast cancer cell generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15:50

    Article  CAS  PubMed  Google Scholar 

  8. Gold LI (1999) The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncol 10:303

    CAS  Google Scholar 

  9. Hansen-Smith F, Egginton S, Zhou AL, Hudlicka O (2001) Growth of arterioles precedes that of capillaries in stretch-induced angiogenesis in skeletal muscle. Microvasc Res 62:1

    Article  CAS  PubMed  Google Scholar 

  10. Hirschi KK, Rohovsky SA, D'Amore PA (1998) PDGF, TGF-B and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805

    Article  CAS  PubMed  Google Scholar 

  11. Hirschi KK, Rohovsky SA, Beck LH, Smith SR, D'Amore PA (1999) Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res 84:298

    CAS  PubMed  Google Scholar 

  12. Janvier R, Sourla A, Koutsilieris M, Doillon CJ (1997) Stromal fibroblasts are required for PC-3 human prostate cancer cells to produce capillary-like formation of endothelial cells in a three-dimensional co-culture system. Anticancer Res 17:1551

    CAS  PubMed  Google Scholar 

  13. Jones R, Jacobson M, Steudel W (1999) Alpha-smooth-muscle actin and microvascular precursor smooth-muscle cells in pulmonary hypertension. Am J Resp Cell Mol Biol 20:582

    CAS  Google Scholar 

  14. Laird AD, Vajkoczy P, Shawver LK, Thurnher A, Liang C, Mohammadi M, Schlessinger J, Ullrich A, Hubbard SR, Blake RA, Fong AT, Strawn LM, Sun L, Tang C, Hawtin R, Tang F, Shenoy N, Hirth KP, McMahon G, Cherrington JM (2000) SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res 60:4152

    CAS  PubMed  Google Scholar 

  15. Lau DH, Xue L, Young LJ, Burge PA, Cheung AT (1999) Paclitaxel (Taxol): an inhibitor of angiogenesis in a highly vascularized transgenic breast cancer. Cancer Biother Radiopharm 14:31

    CAS  PubMed  Google Scholar 

  16. Lazard D, Sastre X, Frid MG, Glukhova MA, Thiery JP, Koteliansky VE (1993) Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue. Proc Natl Acad Sci U S A 90:999

    CAS  PubMed  Google Scholar 

  17. Mitchell J, Wookcock-Mitchell J, Reynolds S, Low R, Leslie K, Adler K, Gabbiani G, Skalli O (1989) Alpha-smooth muscle actin in parenchymal cells of bleomycin-injured rat lung. Lab Invest 60:643

    CAS  PubMed  Google Scholar 

  18. Orimo A, Tomioka Y, Shimizu Y, Sato M, Oigawa S, Kamata K, Nogi Y, Inoue S, Takahashi M, Hata T, Muramatsu M (2001) Cancer-associated myofibroblasts possess various factors to promote endometrial tumor progression. Clin Cancer Res 7:3097

    CAS  PubMed  Google Scholar 

  19. Park CC, Bissell MJ, Barcellos-Hoff MH (2000) The influence of the microenvironment on the malignant phenotype. Mol Med Today 6:324

    Article  CAS  PubMed  Google Scholar 

  20. Parrott JA, Nilsson E, Mosher R, Magrane G, Albertson D, Pinkel D, Gray JW, Skinner MK (2001) Stromal-epithelial interactions in the progression of ovarian cancer: influence and source of tumor stromal cells. Mol Cell Endocrinol 175:29

    Article  CAS  PubMed  Google Scholar 

  21. Ronnov-Jessen L, Van Deurs B, Nielsen M, Petersen OW (1992) Identification, paracrine generation, and possible function of human breast carcinoma myofibroblasts in culture. In Vitro Cell Dev Biol 28A:273

    Google Scholar 

  22. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ (1995) The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95:859

    CAS  PubMed  Google Scholar 

  23. Rowinsky EK, Donehower RC (1991) The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics. Pharmacol Ther 52:35

    CAS  PubMed  Google Scholar 

  24. Sappino AP, Skalli O, Jackson B, Schurch W, Gabiani G (1988) Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int J Cancer 41:707

    CAS  PubMed  Google Scholar 

  25. Sato N, Sawasaki Y, Senoo A, Fuse Y, Hirano Y, Goto T (1987) Development of capillary networks from rat microvascular fragments in vitro: the role of myofibroblastic cells. Microvasc Res 33:194

    CAS  PubMed  Google Scholar 

  26. Schurch W, Seemayer TA, Lagace R (1981) Stromal myofibroblasts in primary invasive and metastatic carcinomas. A combined immunological, light, and electron microscopic study. Virchows Arch A 391:125

    CAS  Google Scholar 

  27. Schurch W, Seemayer TA, Gabbiani G (1998) The myofibroblast: a quarter century after its discovery. Am J Surg Pathol 22:141

    Article  CAS  PubMed  Google Scholar 

  28. Shekhar MPV, Werdell J, Santner SJ, Pauley RJ, Tait L (2001) Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: implications for tumor development and progression. Cancer Res 61:1320

    CAS  PubMed  Google Scholar 

  29. Teicher BA (2001) Malignant cells, directors of the malignant process: role of transforming growth factor-beta. Cancer Metastasis Rev 20:133

    Article  CAS  PubMed  Google Scholar 

  30. Tuxhorn JA, McAlhany SJ, Dang TD, Ayala GE, Rowley DR (2002) Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Cancer Res 62:3298

    CAS  PubMed  Google Scholar 

  31. Vaughan MB, Howard EW, Tomasek JJ (2000) Transforming growth factor-beta1 promotes the morphological and functional differentiation of the myofibroblasts. Exp Cell Res 257:180

    Article  CAS  PubMed  Google Scholar 

  32. Villaschi S, Nicosia RF (1994) Paracrine interaction between fibroblasts and endothelial cells in a serum-free coculture model. Modulation of angiogenesis and collagen gel contraction. Lab Invest 71:291

    CAS  PubMed  Google Scholar 

  33. Walter JJ, Sane DC (2002) The role of smooth muscle cells and pericytes in angiogenesis. In: S. Mousa (ed) Angiogenesis inhibitors and stimulators: potential therapeutic implications. Landes and Springer, Georgetown, TX, p 25

Download references

Acknowledgements

We thank the Histology Department for help in sample processing and sectioning, Patty Clow for assistance in confocal imaging, Megan O'Brien and Leslie Kurtzberg for technical assistance, Trent Richardson for image processing, and Cecile Rouleau for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Walter-Yohrling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter-Yohrling, J., Pratt, B.M., Ledbetter, S. et al. Myofibroblasts enable invasion of endothelial cells into three-dimensional tumor cell clusters: a novel in vitro tumor model. Cancer Chemother Pharmacol 52, 263–269 (2003). https://doi.org/10.1007/s00280-003-0664-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-003-0664-2

Keywords

Navigation