Skip to main content
Log in

Detailed near-infrared study of the ‘water’-related transformations in silcrete upon heat treatment

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

In archaeology, lithic heat treatment is the process of modifying a rock for stone tool production using fire. Although the earliest known cases of heat treatment come from South Africa and involved silcrete, a microcrystalline pedogenic silica rock, its thermal transformations remain poorly understood. We investigate the ‘water’-related transformations in silcrete using direct transmission near-infrared spectroscopy. We found that SiOH is noticeably lost between 250 and 450 °C and hydroxyl reacts with H2O, part of which is trapped in the structure of the rocks. This water can only be evaporated through heat-induced fracturing at high temperatures, imposing maximum temperatures for silcrete heat treatment of approximately 500 °C. Between 250 and 450 °C new siloxane bonds are formed according to the reaction 2SiOH → Si–O–Si + H2O, which can be expected to transform the rock’s mechanical properties. The tolerance of silcrete for relatively fast ramp rates can be explained by its pore volume and low SiOH content, ensuring good water evaporation. These results shed light on the processes taking place in silcrete during heat treatment and allow for a better understanding of the parameters needed for it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aines RD, Rossman GR (1984) Water in minerals? A peak in the infrared. J Geophys Res 89:4059–4071. doi:10.1029/JB089iB06p04059

    Article  Google Scholar 

  • Anderson jr JH (1965) Calorimetric vs. infrared measures of adsorption bond strengths on silica. Surf Sci 3:290–291

    Article  Google Scholar 

  • Anderson jr JH, Wickersheim KA (1964) Near infrared characterization of water and hydroxyl groups on silica surfaces. Surf Sci 2:252–260

    Article  Google Scholar 

  • Benesi HA, Jones AC (1959) An infrared study of the water–silica gel system. J Phys Chem 63:179–182. doi:10.1021/j150572a012

    Article  Google Scholar 

  • Binder D (1984) Systèmes de débitage laminaire par pression: exemples chasséens provençaux. In: Tixier J, Inizan ML, Roche H (eds) Préhistoire de la pierre taillée, 2: économie du débitage laminaire: technologie et expérimentation: IIIe table ronde de technologie lithique. Meudin-Bellevue, october 1982. Cercle de Recherches et d’Etudes Préhistoriques, Paris, pp 71–84

  • Bordes F (1969) Traitement thermique du silex au Solutréen. Bull Soc Préhist Fr 66:197

    Article  Google Scholar 

  • Brown KS et al (2009) Fire as an engineering tool of early modern humans. Science 325:859–862

    Article  Google Scholar 

  • Cochrane GWG, Habgood PJ, Doelman T, Herries AIR, Webb JA (2012) A progress report on research into stone artefacts of the southern Arcadia Valley, central Queensland. Aust Archaeol 75:104–109

    Article  Google Scholar 

  • Corkill T (1997) Red, yellow and black: colour and heat in archaeological stone. Aust Archaeology 45:54–55

    Article  Google Scholar 

  • Crabtree DE, Butler BR (1964) Notes on experiment in flint knapping: 1 heat treatment of silica materials. Tebiwa 7:1–6

    Google Scholar 

  • Eriksen BV (2006) Colourful lithics—the “Chaîne Opératoire” of Heat Treated Chert Artefacts in the Early Mesolithic of Southwest Germany. In: Kind CJ (ed) After the ice age. Settlements, subsistence and social development in the Mesolithic of Central Europe, Materialhefte zur Archäologie in Baden-Württemberg. Stuttgart: Konrad Theiss Verlag, pp 147–153

  • Flörke OW, Köhler-Herbertz B, Langer K, Tönges I (1982) Water in microcrystalline quartz of volcanic origin: agates. Contrib Miner Petrol 80:324–333

    Article  Google Scholar 

  • Flörke OW, Graetsch H, Martin B, Roller K, Wirth R (1991) Nomenclature of micro- and non-crystalline silica minerals, based on structure and microstructure. Neues Jahrb Miner Abh 163:19–42

    Google Scholar 

  • Frondel C (1982) Structural hydroxyl in chalcedony (type B quartz). Am Mineral 67:1248–1257

    Google Scholar 

  • Fukuda J, Peach CJ, Spiers CJ, Nakashima S (2009) Electrical impedance measurement of hydrous microcrystalline quartz. J Mineral Petrol Sci 104:176–181. doi:10.2465/jmps.081022f

    Article  Google Scholar 

  • Graetsch H, Flörke OW, Miehe G (1985) The nature of water in chalcedony and opal-C from brazilian agate geodes. Phys Chem Miner 12:300–306

    Article  Google Scholar 

  • Grim R (1962) Applied clay mineralogy. International series in the earth sciences. McGraw-Hill, New York

    Google Scholar 

  • Hanckel M (1985) Hot rocks: heat treatment at Burrill Lake and Currarong, New South Wales. Archaeol Ocean 20:98–103

    Article  Google Scholar 

  • Hiscock P (1993) Bondian technology in the Hunter Valley, New South Wales. Archaeol Ocean 28:65–76

    Article  Google Scholar 

  • Kronenberg AK (1994) Hydrogen speciation and chemical weakening of quartz. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Silica: physical behaviour, geochemistry and materials applications. Reviews in Mineralogy 29. Mineralogical Society of America, Washington, pp 123–176

  • Langer K, Flörke OW (1974) Near infrared absorption spectra (4000–9000 cm-1) of opals and the role of “water” in these SiO2 ·nH2O minerals. Fortschr Mineral 53:17–51

    Google Scholar 

  • Lauer C (2014) Tempern von Silcrete—Liegt der Verbesserung der Zuschlagbarkeit derselbe Mechanismus zugrunde wie bei Flint? Unpublished Bachelor thesis, Eberhard Karls University of Tübingen

  • Léa V (2005) Raw, pre-heated or ready to use: discovering specialist supply systems for flint industries in mid-Neolithic (Chassey culture) communities in southern France. Antiquity 79:1–15

    Google Scholar 

  • McDonald RS (1958) Surface functionality of amorphous silica by infrared spectroscopy. J Phys Chem 62:1168–1178. doi:10.1021/j150568a004

    Article  Google Scholar 

  • McLaren AC, Cook RF, Hyde ST, Tobin RC (1983) The mechanisms of the formation and growth of water bubbles and associated dislocation loops in synthetic quartz. Phys Chem Miner 9:79–94. doi:10.1007/bf00308151

    Article  Google Scholar 

  • Mercieca A, Hiscock P (2008) Experimental insights into alternative strategies of lithic heat treatment. J Archaeol Sci 35:2634–2639

    Article  Google Scholar 

  • Micheelsen H (1966) The structure of dark flint from Stevns, Denmark. Medd Dansk Geol Foren 16:285–368

    Google Scholar 

  • Mourre V, Villa P, Henshilwood CS (2010) Early use of pressure flaking on lithic artifacts at Blombos Cave, South Africa. Science 330:659–662

    Article  Google Scholar 

  • Porraz G, Texier P-J, Archer W, Piboule M, Rigaud J-P, Tribolo C (2013) Technological successions in the Middle Stone Age sequence of Diepkloof Rock Shelter, Western Cape, South Africa. J Archaeol Sci 40:3376–3400. doi:10.1016/j.jas.2013.02.012

    Article  Google Scholar 

  • Roberts DL (2003) Age, genesis and significance of south african coastal belt silcretes, Memoir 95. Council for Geoscience, Pretoria

    Google Scholar 

  • Roqué-Rosell J et al. (2010) Influence of heat treatment on the physical transformations of flint used by neolithic societies in the Western Mediterranean. In: International conference, materials research society, Boston, 2010. pp mrsf10-1319-ww1309-1302

  • Rowney MAASC (1994) Palaeomagnetic tests of heat treated silcrete artefacts. Aust Aborig Stud 1:39–43

    Google Scholar 

  • Schmidt P (2011) Traitement thermique des silicifications sédimentaires, un nouveau modèle des transformations cristallographiques et structurales de la calcédoine induites par la chauffe. Unpublished doctoral thesis, Muséum national d’histoire naturelle

  • Schmidt P (2014) What causes failure (overheating) during lithic heat treatment? Archaeol Anthropol Sci 6:107–112. doi:10.1007/s12520-013-0162-3

    Article  Google Scholar 

  • Schmidt P, Fröhlich F (2011) Temperature dependent crystallographic transformations in chalcedony, SiO2, assessed in mid infrared spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 78:1476–1481

    Article  Google Scholar 

  • Schmidt P, Mackay A (2016) Why was silcrete heat-treated in the middle stone age? An early transformative technology in the context of raw material use at Mertenhof Rock Shelter, South Africa. PLoS ONE 11:e0149243. doi:10.1371/journal.pone.0149243

    Article  Google Scholar 

  • Schmidt P, Badou A, Fröhlich F (2011) Detailed FT near-infrared study of the behaviour of water and hydroxyl in sedimentary length-fast chalcedony, SiO2, upon heat treatment. Spectrochim Acta Part A Mol Biomol Spectrosc 81:552–559

    Article  Google Scholar 

  • Schmidt P et al (2012) Crystallographic and structural transformations of sedimentary chalcedony in flint upon heat treatment. J Archaeol Sci 39:135–144

    Article  Google Scholar 

  • Schmidt P, Porraz G, Slodczyk A, Bellot-gurlet L, Archer W, Miller CE (2013a) Heat treatment in the South African Middle Stone Age: temperature induced transformations of silcrete and their technological implications. J Archaeol Sci. doi:10.1016/j.jas.2012.10.016

    Google Scholar 

  • Schmidt P, Slodczyk A, Léa V, Davidson A, Puaud S, Sciau P (2013b) A comparative study of the thermal behaviour of length-fast chalcedony, length-slow chalcedony (quartzine) and moganite. Phys Chem Miner 40:331–340. doi:10.1007/s00269-013-0574-8

    Article  Google Scholar 

  • Schmidt P et al (2015) A previously undescribed organic residue sheds light on heat treatment in the Middle Stone Age. J Hum Evol 85:22–34

    Article  Google Scholar 

  • Scholze H (1960) Über die quantitative UR-spektroskopische Wasserbestimmung in Silikaten. Fortschr Mineral 38:122–123

    Google Scholar 

  • Summerfield MA (1983) Petrography and diagenesis of silcrete from the Kalahari Basin and Cape coastal zone, Southern Africa. J Sediment Res 53:895–909

    Google Scholar 

  • Tiffagom M (1998) Témoignages d’un traitement thermique des feuilles de laurier dans le Solutréen supérieur de la grotte du Parpalló (Gandia, Espagne) Paléo 10:147–161

  • Wilke PJ, Flenniken J, Ozbun TL (1991) Clovis Technology at the Anzick Site, Montana. J Calif Great Basin Anthropol 13:242–272

    Google Scholar 

Download references

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (DFG) for funding of the research project Heat Treatment in the South African MSA that made the present study possible (Grant No: CO 226/25-1, MI 1748/2-1, NI 299/25-1) and for funding the Agilent Cary 660 spectrometer used for parts of this study (MI 1748/1-1). We also thank Junichi Fukuda and an anonymous reviewer for their corrections and suggestions during the review process for this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Schmidt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, P., Lauer, C., Buck, G. et al. Detailed near-infrared study of the ‘water’-related transformations in silcrete upon heat treatment. Phys Chem Minerals 44, 21–31 (2017). https://doi.org/10.1007/s00269-016-0833-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0833-6

Keywords

Navigation