Skip to main content

Advertisement

Log in

PVT equation of state of Mn3Al2Si3O12 spessartine garnet

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The thermoelastic parameters of synthetic Mn3Al2Si3O12 spessartine garnet were examined in situ at high pressure up to 13 GPa and high temperature up to 1,100 K, by synchrotron radiation energy dispersive X-ray diffraction within a DIA-type multi-anvil press apparatus. The analysis of room temperature data yielded K 0 = 172 ± 4 GPa and K 0  = 5.0 ± 0.9 when V 0,300 is fixed to 1,564.96 Å3. Fitting of PVT data by means of the high-temperature third-order Birch–Murnaghan EoS gives the thermoelastic parameters: K 0 = 171 ± 4 GPa, K 0  = 5.3 ± 0.8, (∂K 0,T /∂T) P  = −0.049 ± 0.007 GPa K−1, a 0 = 1.59 ± 0.33 × 10−5 K−1 and b 0 = 2.91 ± 0.69 × 10−8 K−2 (e.g., α 0,300 = 2.46 ± 0.54 × 10−5 K−1). Comparison with thermoelastic properties of other garnet end-members indicated that the compression mechanism of spessartine might be the same as almandine and pyrope but differs from that of grossular. On the other hand, at high temperature, spessartine softens substantially faster than pyrope and grossular. Such softening, which is also reported for almandine, emphasize the importance of the cation in the dodecahedral site on the thermoelastic properties of aluminosilicate garnet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrault D, Fiquet G (2000) Synchrotron radiation and laser heating in a diamond anvil cell. Rev Sci Instrum 72:1283–1288. doi:10.1063/1.1343866

    Article  Google Scholar 

  • Angel RJ (2000) Equations of state. Rev Mineral Geochem 41:35–59

    Article  Google Scholar 

  • Babuska V, Fiala J, Kumazawa M et al (1978) Elastic properties of garnet solid-solution series. Phys Earth Planet Inter 16:157–176

    Article  Google Scholar 

  • Bass JD (1989) Elasticity of grossular and spessartite garnets by Brillouin spectroscopy. J Geophys Res B 94(6):7621–7628

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. Longman, Harlow/Wiley, New York

    Google Scholar 

  • Diella V, Sani A, Levy D, Pavese A (2004) High-pressure synchrotron X-ray diffraction study of spessartine and uvarovite: a comparison between different equation of state models. Am Mineral 89:371–376

    Google Scholar 

  • Fan DW, Zhou WG, Liu CQ et al (2009) The thermal equation of state of (Fe0.86Mg0.07Mn0.07)3Al2Si3O12 almandine. Mineral Mag 73:95–102. doi:10.1180/minmag.2009.073.1.95

    Article  Google Scholar 

  • Geiger CA, Armbruster T (1997) Mn3Al2Si3O12 spessartine and Ca3Al2Si3O12 grossular garnet: structural dynamic and thermodynamic properties. Am Mineral 82:740–747

    Google Scholar 

  • Geiger CA, Rossman GR (1994) Crystal field stabilization energies of almandine-pyrope and almandine-spessartine garnets determined by FTIR near infrared measurements. Phys Chem Miner 21:516–525

    Google Scholar 

  • Gréaux S, Kono Y, Nishiyama N et al (2011) P–V–T equation of state of Ca3Al2Si3O12 grossular garnet. Phys Chem Miner 38:85–94. doi:10.1007/s00269-010-0384-1

    Article  Google Scholar 

  • Gwanmesia GD, Zhang J, Darling K et al (2006) Elasticity of polycrystalline pyrope (Mg3Al2Si3O12) to 9GPa and 1000 °C. Phys Earth Planet Inter 155:179–190. doi:10.1016/j.pepi.2005.10.008

    Article  Google Scholar 

  • Kono Y, Gréaux S, Higo Y et al (2010) Pressure and temperature dependences of elastic properties of grossular garnet up to 17 GPa and 1 650 K. J Earth Sci 21:782–791. doi:10.1007/s12583-010-0112-2

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2000) GSAS general structure analysis system. Operation manual. Los Alamos Natl Lab LAUR 86-748:1–179

    Google Scholar 

  • Le Bail A, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452

    Article  Google Scholar 

  • Léger JM, Redon AM, Chateau C (1990) Compressions of synthetic pyrope, spessartine and uvarovite garnets up to 25 GPa. Phys Chem Minerals 17:161–167

    Google Scholar 

  • Nishiyama N, Wang Y, Sanehira T et al (2008) Development of the Multi-anvil Assembly 6-6 for DIA and D-DIA type high-pressure apparatuses. High Press Res 28:307–314. doi:10.1080/08957950802250607

    Article  Google Scholar 

  • Nobes RH, Akhmatskaya EV, Milman V et al (2000) Structure and properties of aluminosilicate garnets and katoite: an ab initio study. Comput Mater Sci 17:141–145

    Article  Google Scholar 

  • Quartieri S, Antonioli G, Artioli G et al (1997) A temperature dependent X-ray absorption fine structure study of dynamic X-site disorder in almandine: a comparison to diffraction data. Phys Chem Miner 24:200–205

    Article  Google Scholar 

  • Rodehorst U, Geiger CA, Armbruster T (2002) The crystal structures of grossular and spessartine between 100 and 600 K and the crystal chemistry of grossular-spessartine solid solutions. Am Mineral 87:542–549

    Google Scholar 

  • Rodehorst U, Carpenter MA, Ballaran TB, Geiger CA (2004) Local structural heterogeneity, mixing behaviour and saturation effects in the grossular-spessartine solid solution. Phys Chem Miner 31:387–404

    Google Scholar 

  • Rubie DC (1998) Characterising the sample environment in multianvil high-pressure experiments. Phase Transit 68:431–451

    Article  Google Scholar 

  • Sani A, Quartieri S, Boscherini F et al (2004) Fe2+-O and Mn2+-O bonding and Fe2+- and Mn2+-vibrational properties in synthetic almandine-spessartine solid solutions: an X-ray absorption fine structure study. Eur J Mineral 16:801–808. doi:10.1127/0935-1221/2004/0016-0801

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Tsuchiya T (2003) First-principles prediction of the P–V–T equation of state of gold and the 660-km discontinuity in Earth’s mantle. J Geophys Res B 108(10):1–9

    Google Scholar 

  • Zhang L, Ahsbahs H, Kutoglu A, Geiger CA (1999) Single-crystal hydrostatic compression of synthetic pyrope, almandine, spessartine, grossular and andradite garnets at high pressures. Phys Chem Miner 27:52–58

    Article  Google Scholar 

  • Zou Y, Greaux S, Irifune T et al (2012) Thermal equation of state of Mg3Al2Si3O12 pyrope garnet up to 19 GPa and 1,700 K. Phys Chem Miner 39:589–598. doi:10.1007/s00269-012-0514-z

    Article  Google Scholar 

Download references

Acknowledgments

The synchrotron radiation experiments performed at AR-NE5C have been done with the approval of the KEK (2011G065). Authors are thankful to Y. Nishihara, X. Wang and H. Ohfuji for fruitful discussions. D.M. Jenkins and an anonymous reviewer are acknowledged for their reviews, which improved the manuscript. This work was partly supported by the Global-COE program “Deep Earth Mineralogy”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steeve Gréaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gréaux, S., Yamada, A. PVT equation of state of Mn3Al2Si3O12 spessartine garnet. Phys Chem Minerals 41, 141–149 (2014). https://doi.org/10.1007/s00269-013-0632-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-013-0632-2

Keywords

Navigation