Skip to main content
Log in

A Fe K-edge XAS study of amethyst

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

An X-ray absorption spectroscopy (XAS) study of the Fe local environment in natural amethyst (a variety of α-quartz, SiO2) has been carried out. Room temperature measurements were performed at the Fe K-edge (7,112 eV), at both the X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) regions. Experimental results were then compared with DFT calculations. XANES experimental spectra suggest Fe to occur mainly in the trivalent state, although a fraction of Fe2+ is identified. EXAFS spectra, on the other hand, reveal an unusual short distance for the first coordination shell: <Fe–O> = 1.78(2) Å, the coordination number being 2.7(5). These results allow to establish that Fe replaces Si in its tetrahedral site, and that numerous local distortions are occurring as a consequence of the presence of Fe3+ variably compensated by protons and/or alkaline ions, or uncompensated. The formal valence of Fe, on the basis of both experimental and DFT structural features, can be either 4+ or 3+. Taking into account the XANES evidences, we suggest that Fe mainly occurs in the trivalent state, compensated by protons, and that a minor fraction of Fe4+ is stabilised by the favourable local structural arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adekeye JID, Cohen AJ (1986) Correlation of Fe4+ optical anisotropy, Brazil twinning and channels in the basal plane of amethyst quartz. Applied Geochem 1(1):153–160

    Article  Google Scholar 

  • Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys Rev B58:7565–7576

    Google Scholar 

  • Bappu MKV (1953) Spectroscopic study of amethyst quartz in the ultraviolet and infrared regions. Indian J Phys 27:385–392

    Google Scholar 

  • Bearden JA, Burr AF (1967) Re-evaluation of X-ray atomic energy levels. Rev Mod Phys 39:125–142

    Article  Google Scholar 

  • Blacke RZ, Hessevick RE, Zoltai T, Finger LW (1966) Refinement of the hematite structure. Am Mineral 51:123–129

    Google Scholar 

  • Bragg L, Claringbull GF (1965) Crystal structure of minerals. In: Bragg L, Claringbull GF (eds) The crystalline state, vol 4. Bell and Sons, London

    Google Scholar 

  • Burkhard DJM (2000) Iron bearing silicate glasses at ambient conditions. J Non-Cryst Solids 275:175–188

    Article  Google Scholar 

  • Burkov VI, Egorysheva AV, YuF Kargin, Mar’in AA, Fedotov EV (2005) Circular dichroism spectra of synthetic amethyst crystals. Crystallogr Rep 50(3):461–464

    Article  Google Scholar 

  • Cohen AJ (1985) Amethyst color in quartz, the result of radiation protection involving iron. Am Mineral 70(11–12):1180–1185

    Google Scholar 

  • Cohen AJ, Hassan F (1974) Ferrous and ferric ions in synthetic α-quartz and natural amethyst. Am Mineral 59:719–728

    Google Scholar 

  • Cortezão SU, Pontuschka WM, Da Rocha MSF, Blak AR (2003) Depolarisation currents (TSDC) and paramagnetic resonance (EPR) of iron in amethyst. J Phys Chem Solids 64:1151–1155

    Article  Google Scholar 

  • Cox RT (1976) ESR of an S = 2 centre in amethyst quartz and its possible identification as the d4 ion Fe4+. J Phys C Solid State Phys 9:3355–3361

    Article  Google Scholar 

  • Cox RT (1977) Optical absorption of the d4 ion iron(4+) in pleochroic amethyst quartz. J Phys C Solid State Phys 10(22):4631–4643

    Article  Google Scholar 

  • Cressey G, Henderson CMB, van der Laan G (1993) Use of L-edge X-ray absorption spectroscopy to characterize multiple valence states of 3d transition metals; a new probe for mineralogical and geochemical research. Phys Chem Miner 20:111

    Article  Google Scholar 

  • d’Acapito F, Colonna S, Pascarelli S, Antonioli G, Balerna A, Bazzini A, Boscherini F, Campolungo F, Chini G, Dalba G, Davoli I, Fornasini P, Graziola R, Licheri G, Meneghini C, Rocca F, Sangiorgio L, Sciarra V, Tullio V, Mobilio S (1998) GILDA (Italian Beamline) on BM8. ESRF Newsl 30:42–44

    Google Scholar 

  • Dedushenko SK, Makhina IB, Marin AA, Mukhanov VA, Perfiliev YD (2004) What oxidation state of iron determines the amethyst colour? Hyperfine Interact 156(157):417–422

    Article  Google Scholar 

  • Donaldson K, Borm PJA (1998) The quartz hazard a variable entity. Ann Occup Hyg 42(5):287–294

    Google Scholar 

  • Farges F, Lefrere Y, Rossano S, Berthereau A, Calas G, Brown GE Jr (2004) The effect of redox state on the local structural environment of iron in silicate glasses: a combined XAFS spectroscopy, molecular dynamics, and bond valence study. J Non-Cryst Solids 344:176–188

    Article  Google Scholar 

  • Fubini B, Otero Areàn C (1999) Chemical aspects of the toxicity of inhaled mineral dusts. Chem Soc Rev 28:373–381

    Article  Google Scholar 

  • Fujino K, Sasaki S, Takéuchi Y, Sadanaga R (1981) X-ray determination of electron distributions in forsterite, fayalite and tephroite. Acta Crystallogr B37:513–518

    Google Scholar 

  • Galoisy L, Calas G, Arrio MA (2001) High-resolution XANES spectra of iron in minerals and glasses: structural information from the pre-edge region. Chem Geol 174:307–319

    Article  Google Scholar 

  • Giuli G, Paris E, Wu Z, Brigatti MF, Cibin G, Mottana A, Marcelli A (2001) Experimental and theoretical XANES and EXAFS study of tetra-ferriphlogopite. Eur J Mineral 13:1099–1108

    Article  Google Scholar 

  • Giuli G, Pratesi G, Cipriani C, Paris E (2002) Iron local structure in tektites and impact glasses by extended X-ray absorption fine structure and high-resolution X-ray absorption near-edge structure spectroscopy. Geochim Cosmochim Acta 66:4347–4353

    Article  Google Scholar 

  • Gliozzo E, Santagostino Barbone A, D’Acapito F, Turchiano M, Turbanti Memmi I, Volpe G (2009) The sectilia panels of Faragola (Ascoli Satriano, Southern Italy): a multi-analytical study of the green, marbled (green and yellow), blue and blackish glass slabs. Archaeometry (in press). doi:10.1111/j.1475-4754.2009.00493.x

  • Halliburton LE, Hantehzadeh MR, Minge J, Mombourquette MJ, Weil JA (1989) EPR study of Fe3+ in α-quartz: a reexamination of the lithium-compensated center. Phys Rev B40:2076–2081

    Google Scholar 

  • Hamilton WC (1958) Neutron diffraction investigation of the 119°K transition in magnetite. Phys Rev 110:1050–1057

    Article  Google Scholar 

  • Hutton DR, Troup GJ (1966) Paramagnetic resonance centres in amethyst and citrine quartz. Nature 211:621

    Article  Google Scholar 

  • Jeannot C, Malaman B, Gérardin R, Oulladiaf B (2002) Synthesis, crystal, and magnetic structures of the sodium ferrate (IV) Na4FeO4 studied by neutron diffraction and Mössbauer techniques. J Solid State Chem 165:266–277

    Article  Google Scholar 

  • Jiang X, Guo GY (2004) Electronic structure, magnetism, and optical properties of Fe2SiO4 fayalite at ambient and high pressures: a GGA + U study. Phys Rev B69:155108, 6 pp

    Google Scholar 

  • Kihara K (1990) An X-ray study of the temperature dependence of the quartz structure. Eur J Mineral 2:63–77

    Google Scholar 

  • Krause MO, Oliver JH (1979) Natural widths of atomic K and L levels, Kα X-ray lines and several KLL Auger lines. J Phys Chem Ref Data 8:329–338

    Article  Google Scholar 

  • Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B47:558–561

    Google Scholar 

  • Lehmann G, Moore WJ (1966) Color center in amethyst quartz. Science 152:1061–1062

    Article  Google Scholar 

  • Minge J, Mombourquette MJ, Weil JA (1990) EPR study of Fe3+ in α-quartz: the sodium-compensated center. Phys Rev B42:33–36

    Google Scholar 

  • Mombourquette MJ, Tennant WC, Weil JA (1986) EPR study of Fe3+ in α-quartz: a reexamination of the so-called/center. J Chem Phys 85:68–79

    Article  Google Scholar 

  • Mombourquette MJ, Minge J, Hantehzadeh MR, Weil JA, Halliburton LE (1989) EPR study of Fe3+ in α-quartz: hydrogen-compensated center. Phys Rev B39:4004–4008

    Google Scholar 

  • Nesterova OV, Petrusenko SR, Kokozay VN, Skelton BW, Jezierska J, Linert W, Ozarowski A (2008) Structural, magnetic, high-frequency and high-field EPR investigation of double-stranded heterometallic [{Ni(en)2}2(μ-NCS)4Cd(NCS)2]n·nCH3CN polymer self-assembled from cadmium oxide, nickel thiocyanate and ethylenediamine. Dalton Trans 2008:1431–1436. doi:10.1039/b713252b

  • Pascarelli S, Boscherini F, D’Acapito F, Hrdy J, Meneghini C, Mobilio S (1996) X-ray optics of a dynamical sagittal-focusing monochromator on the GILDA beamline at the ESRF. J Synchrotron Rad 3:147–155

    Article  Google Scholar 

  • Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541

    Article  Google Scholar 

  • Rossman G (1994) Coloured varieties of the silica minerals. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Rev Mineral 29:433–467

  • Rovezzi M, D’Acapito F, Navarro-Quezada A, Faina B, Li T, Bonanni A, Filippone F, Amore Bonapasta A, Dietl T (2009) Local structure of (Ga,Fe)N and (Ga,Fe)N:Si investigated by X-ray absorption fine structure spectroscopy. Phys Rev B79:195209. doi:10.1103/PhysRevB.79.195209

  • Schofield PF, Henderson CMB, Cressey G, van der Laan G (1995) 2p X-ray absorption spectroscopy in the earth sciences. J Synchrotron Radiat 2:93–98

    Article  Google Scholar 

  • Telser J, Pardi LA, Krzystek J, Brunel L-C (1998) EPR spectra from “EPR-silent” species: high field EPR spectroscopy of aqueous Chromium(II). Inorg Chem 37:5769–5775

    Article  Google Scholar 

  • Tumuklu A, Gumus H, Sen S (2008) Role of trace elements in natural amethysts in colouring. Asian J Chem 20(5):4138–4140

    Google Scholar 

  • Weil JA (1994) EPR of iron centres in silicon dioxide. Appl Magn Reson 6:1–16

    Article  Google Scholar 

  • Wilcke M, Farges F, Petit P-E, Brown GE Jr, Martin F (2001) Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study. Am Mineral 86:714–730

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Tuscany Administration for funding this research under the programme “Progetto di ricerca per l’individuazione delle cause di variazione della reattività superficiale della silice cristallina, nei principali comparti di lavoro toscani, in relazione alla sua potenziale patogenicità”. Italian CNR is also acknowledged for support. Authors acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities during experiments SI1593 and SI1773. Authors are also indebted to L. Pellicci of the Ce.Ri.Col Lab. for the ICP-AES investigations, and to N. Capolupo and P. A. Pozzi of the University of Florence and G. Saviozzi for sample preparation. F. dA. acknowledges E. Gliozzo for kindly permitting the publication of the data relative to the glassy sample. The manuscript benefited of the stimulating review by Y. Pan and an anonymous reviewer to whom authors express their warmest thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Di Benedetto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Benedetto, F., D’Acapito, F., Fornaciai, G. et al. A Fe K-edge XAS study of amethyst. Phys Chem Minerals 37, 283–289 (2010). https://doi.org/10.1007/s00269-009-0332-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0332-0

Keywords

Navigation