Skip to main content

Advertisement

Log in

The Progress of the Development of a Climate-smart Agriculture in Europe: Is there Cohesion in the European Union?

  • Published:
Environmental Management Aims and scope Submit manuscript

A Correction to this article was published on 14 February 2023

This article has been updated

Abstract

The development of climate-smart agriculture (CSA) is crucial in ensuring the creation of a low-carbon society and mitigation of climate change. These tasks require concerted actions from multiple stakeholders since the very concept of CSA is rather complex and requires multi-dimensional consideration. This study defines and applies various indicators to evaluate the development of CSA in the European Union (EU). To do this, three different multi-criteria decision-making methods, namely Simple Additive Weighting (SAW), Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR; multi-criteria optimization and compromise solution), were employed for the construction of a composite indicator. A combination of both objective (entropy) and subjective (Analytic Hierarchy Process) weighting techniques was utilized to derive the weights of the indicators. The leaders in the EU in terms of CSA are Austria, Denmark and the Netherlands, whereas the countries with the lowest levels of CSA development are Cyprus, Greece and Portugal. This study also revealed divergence in the development of these practices in the EU-24 for the period 2004–2019. Thus, a more inclusive approach is needed to ensure the spread of climate-smart ideas in European agriculture sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data is available from the corresponding author upon the request.

Change history

References

  • Blanco FA, Delgado FJ, Presno MJ (2020) R&D expenditure in the EU: convergence or divergence? Econ Res-Ekonomska istraživanja 33(1):1685–1710

    Article  Google Scholar 

  • Abegunde VO, Obi A (2022) The role and perspective of climate smart agriculture in Africa: a scientific review. Sustainability 14(4):2317

    Article  Google Scholar 

  • Acosta-Alba I, Chia E, Andrieu N (2019) The LCA4CSA framework: Using life cycle assessment to strengthen environmental sustainability analysis of climate smart agriculture options at farm and crop system levels. Agric Syst 171:155–170

    Article  Google Scholar 

  • Adamides G (2020) A review of climate-smart agriculture applications in Cyprus. Atmosphere 11(9):898

    Article  Google Scholar 

  • Agovino M, Casaccia M, Ciommi M, Ferrara M, Marchesano K (2019) Agriculture, climate change and sustainability: the case of EU-28. Ecol Indic 105:525–543

    Article  Google Scholar 

  • Akrofi-Atitianti F, Ifejika Speranza C, Bockel L, Asare R (2018) Assessing climate smart agriculture and its determinants of practice in Ghana: a case of the cocoa production system. Land 7(1):30

    Article  Google Scholar 

  • Amadu FO, McNamara PE, Miller DC (2020a) Yield effects of climate-smart agriculture aid investment in southern Malawi. Food Policy 92:101869

    Article  Google Scholar 

  • Amadu FO, Miller DC, McNamara PE (2020) Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: evidence from southern Malawi. Ecol Econ 167:106443

    Article  Google Scholar 

  • Anderson S, Sriram, V (2019) Moving beyond sisyphus in agriculture R&D to be climate smart and not gender blind. Front Sust Food Syst 84.

  • Andrieu N, Sogoba B, Zougmore R, Howland F, Samake O, Bonilla-Findji O, Corner-Dolloff C (2017) Prioritizing investments for climate-smart agriculture: lessons learned from Mali. Agric Syst 154:13–24

    Article  Google Scholar 

  • Aryal JP, Sapkota TB, Rahut DB, Jat ML (2020) Agricultural sustainability under emerging climatic variability: the role of climate-smart agriculture and relevant policies in India. Int J Innov Sustain Dev 14(2):219–245

    Article  Google Scholar 

  • Arslan A, McCarthy N, Lipper L, Asfaw S, Cattaneo A, Kokwe M (2015) Climate smart agriculture? Assessing the adaptation implications in Zambia. J Agric Econ 66(3):753–780

    Article  Google Scholar 

  • Awada L, Nagy C, Phillips PW (2021) Contribution of land use practices to GHGs in the Canadian Prairies crop sector. PloS One 16(12):e0260946

    Article  CAS  Google Scholar 

  • Azadi H, Moghaddam SM, Burkart S, Mahmoudi H, Van Passel S, Kurban A, Lopez-Carr D (2021) Rethinking resilient agriculture: from climate-smart agriculture to vulnerable-smart agriculture. J Clean Prod 319:128602

    Article  Google Scholar 

  • Bai X, Huang Y, Ren W, Coyne M, Jacinthe PA, Tao B, Matocha C (2019) Responses of soil carbon sequestration to climate‐smart agriculture practices: a meta‐analysis. Glob Change Biol 25(8):2591–2606

    Article  Google Scholar 

  • Bhatt R, Kaur R, Ghosh A (2019) Strategies to practice climate-smart agriculture to improve the livelihoods under the rice-wheat cropping system in South Asia. In Sustainable Management of Soil and Environment (pp. 29–71). Springer, Singapore.

  • Bhattacharyya P, Pathak H, Pal, S (2020) Climate smart agriculture: concepts, challenges, and opportunities. Springer.

  • Bockel L, Sutter P, Touchemoulin O, Jönsson M (2012) Using marginal abatement cost curves to realize the economic appraisal of climate smart agriculture policy options. Methodology 3(1):1–32

    Google Scholar 

  • Braimoh A, Rawlins M, Zhao Y, Loundu, W (2017). Indicators for assessing policy and institutional frameworks for climate smart agriculture. World Bank Climate Smart Agriculture Indicators Report, (105162-GLB).

  • Branca G, Arslan A, Paolantonio A, Grewer U, Cattaneo A, Cavatassi R, Vetter S (2021) Assessing the economic and mitigation benefits of climate-smart agriculture and its implications for political economy: a case study in Southern Africa. J Clean Prod 285:125161

    Article  Google Scholar 

  • Brandt P, Kvakić M, Butterbach-Bahl K, Rufino MC (2017) How to target climate-smart agriculture? Concept and application of the consensus-driven decision support framework “targetCSA”. Agric Syst 151:234–245

    Article  Google Scholar 

  • Brookes G (2022) Genetically modified (GM) crop use 1996–2020: impacts on carbon emissions. GM Crops Food 13(1):242–261

    Article  Google Scholar 

  • Campbell BM, Thornton P, Zougmoré R, Van Asten P, Lipper L (2014) Sustainable intensification: what is its role in climate smart agriculture? Curr Opin Environ Sustainability 8:39–43

    Article  Google Scholar 

  • Chandra A, McNamara KE, Dargusch P (2018) Climate-smart agriculture: perspectives and framings. Clim Policy 18(4):526–541

    Article  Google Scholar 

  • Chandra A, McNamara KE, Dargusch P, Damen B, Rioux J, Dallinger J, Bacudo I (2016) Resolving the UNFCCC divide on climate-smart agriculture. Carbon Manag 7(5-6):295–299

    Article  CAS  Google Scholar 

  • Charron N, Lapuente V, Annoni P (2019) Measuring quality of government in EU regions across space and time. Pap Regional Sci 98(5):1925–1953

    Article  Google Scholar 

  • Clay N, Zimmerer KS (2020) Who is resilient in Africa’s green revolution? Sustainable intensification and climate smart agriculture in Rwanda. Land Use Policy 97:104558

    Article  Google Scholar 

  • Collins A (2018) Saying all the right things? Gendered discourse in climate-smart agriculture. J Peasant Stud 45(1):175–191

    Article  Google Scholar 

  • De Pinto A, Cenacchi N, Kwon HY, Koo J, Dunston S (2020) Climate smart agriculture and global food-crop production. PLoS One 15(4):e0231764

    Article  Google Scholar 

  • Dinesh D, Aggarwal P, Khatri-Chhetri A, Rodríguez AML, Mungai C, Sebastian L, Zougmore RB (2017) The rise in Climate-Smart Agriculture strategies, policies, partnerships and investments across the globe. Agriculture Dev 30:4–9

    Google Scholar 

  • Dinesh D, Zougmore RB, Vervoort J, Totin E, Thornton PK, Solomon D, Campbell BM (2018) Facilitating change for climate-smart agriculture through science-policy engagement. Sustainability 10(8):2616

    Article  Google Scholar 

  • Djido A, Zougmoré RB, Houessionon P, Ouédraogo M, Ouédraogo I, Diouf NS (2021) To what extent do weather and climate information services drive the adoption of climate-smart agriculture practices in Ghana? Clim Risk Manag 32:100309

    Article  Google Scholar 

  • Dos Santos MJPL, Ahmad N (2020) Sustainability of European agricultural holdings. J Saudi Soc Agric Sci 19(5):358–364

    Google Scholar 

  • Engel S, Muller A (2016) Payments for environmental services to promote “climate‐smart agriculture”? Potential and challenges. Agric Econ 47(S1):173–184

    Article  Google Scholar 

  • Faling M, Biesbroek R (2019) Cross-boundary policy entrepreneurship for climate-smart agriculture in Kenya. Policy Sci 52(4):525–547

    Article  Google Scholar 

  • Faling M, Biesbroek R, Karlsson‐Vinkhuyzen S (2018) The strategizing of policy entrepreneurs towards the Global Alliance for Climate‐Smart. Agriculture Glob Policy 9(3):408–419

    Article  Google Scholar 

  • FAO (2013) Climate-smart agriculture: Sourcebook. Rome, Italy. Food and Agriculture Organization of the United Nations. Accessible on the internet: https://www.fao.org/3/i3325e/i3325e.pdf [retrieved 2022 12 19]

  • Franek J, Kresta A (2014) Judgment scales and consistency measure in AHP. Procedia Econ Financ 12:164–173

    Article  Google Scholar 

  • Fuchs R, Brown C, Rounsevell, M (2020) Europe’s Green Deal offshores environmental damage to other nations.

  • Fusco G, Melgiovanni M, Porrini D, Ricciardo TM (2020) How to improve the diffusion of climate-smart agriculture: What the literature tells us. Sustainability 12(12):5168

    Article  Google Scholar 

  • Gangwar DS, Tyagi S, Soni SK (2019) A conceptual framework of agroecological resource management system for climate-smart agriculture. Int J Environ Sci Technol 16(8):4123–4132

    Article  Google Scholar 

  • Garrone M, Emmers D, Olper A, Swinnen J (2019) Jobs and agricultural policy: Impact of the common agricultural policy on EU agricultural employment. Food Policy 87:101744

    Article  Google Scholar 

  • Garrone M, Emmers D, Olper A, Swinnen JF (2018) Subsidies and Agricultural Productivity: CAP payments and labour productivity (convergence) in EU agriculture (No. 409). LICOS Discussion Paper.

  • Ghosh M (2019) Climate-smart agriculture, productivity and food security in India. J Dev Policy Pract 4(2):166–187

    Article  Google Scholar 

  • Goepel KD (2019) Comparison of judgment scales of the analytical hierarchy process—a new approach. Int J Inf Technol Decis Mak 18(02):445–463

    Article  Google Scholar 

  • Greer A (2017) Post-exceptional politics in agriculture: an examination of the 2013 CAP reform. J Eur Public Policy 24(11):1585–1603

    Article  Google Scholar 

  • Habtewold TM (2021) Impact of climate-smart agricultural technology on multidimensional poverty in rural Ethiopia. J Integr Agriculture 20(4):1021–1041

    Article  Google Scholar 

  • Hammed TB, Oloruntoba EO, Ana GREE (2019) Enhancing growth and yield of crops with nutrient-enriched organic fertilizer at wet and dry seasons in ensuring climate-smart agriculture. Int J Recycling Org Waste Agriculture 8(1):81–92

    Article  Google Scholar 

  • Hammond J, Fraval S, Van Etten J, Suchini JG, Mercado L, Pagella T, van Wijk MT (2017) The Rural Household Multi-Indicator Survey (RHoMIS) for rapid characterisation of households to inform climate smart agriculture interventions: description and applications in East Africa and Central America. Agric Syst 151:225–233

    Article  Google Scholar 

  • Hasan MK, Desiere S, D’Haese M, Kumar L (2018) Impact of climate-smart agriculture adoption on the food security of coastal farmers in Bangladesh. Food Security 10(4):1073–1088

    Article  Google Scholar 

  • Hellin J, Fisher E (2018) Building pathways out of poverty through climate smart agriculture and effective targeting. Dev Pract 28(7):974–979

    Article  Google Scholar 

  • Hellin J, Fisher E (2019) Climate-smart agriculture and non-agricultural livelihood transformation. Climate 7(4):48

    Article  Google Scholar 

  • Henke R, Benos T, De Filippis F, Giua M, Pierangeli F, Pupo D’Andrea MR (2018) The new common agricultural policy: Ηow do member states respond to flexibility? JCMS: J Common Mark Stud 56(2):403–419

    Google Scholar 

  • Ho TT, Shimada K (2019) The effects of climate smart agriculture and climate change adaptation on the technical efficiency of rice farming—an empirical study in the Mekong Delta of Vietnam. Agriculture 9(5):99

    Article  Google Scholar 

  • Huyer S, Nyasimi M (2017) Gender and social inclusion. Climate-smart agriculture manual for agriculture education in Zimbabwe. Copenhagen: Climate Technology Centre and Network.

  • Hwang CL, Yoon K (1981) Methods for multiple attribute decision making. In Multiple attribute decision making (pp. 58–191). Springer, Berlin, Heidelberg

  • Imran MA, Ali A, Ashfaq M, Hassan S, Culas R, Ma C (2018) Impact of Climate Smart Agriculture (CSA) practices on cotton production and livelihood of farmers in Punjab, Pakistan. Sustainability 10(6):2101

    Article  Google Scholar 

  • Imran MA, Ali A, Ashfaq M, Hassan S, Culas R, Ma C (2019) Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: a sustainable production alternative for cotton. Land Use Policy 88:104113

    Article  Google Scholar 

  • Israel MA, Amikuzuno J, Danso-Abbeam G (2020) Assessing farmers’ contribution to greenhouse gas emission and the impact of adopting climate-smart agriculture on mitigation. Ecol Process 9(1):1–10.

    Article  Google Scholar 

  • Jagustović R, Papachristos G, Zougmoré RB, Kotir JH, Kessler A, Ouédraogo M, Dittmer KM (2021) Better before worse trajectories in food systems? An investigation of synergies and trade-offs through climate-smart agriculture and system dynamics. Agric Syst 190:103131

    Article  Google Scholar 

  • Jagustović R, Papachristos G, Zougmoré RB, Kotir JH, Kessler A, Ouédraogo M, Dittmer KM (2021) Better before worse trajectories in food systems? An investigation of synergies and trade-offs through climate-smart agriculture and system dynamics. Agric Syst 190:103131

    Article  Google Scholar 

  • Jat HS, Choudhary M, Datta A, Yadav AK, Meena MD, Devi R, Sharma PC (2020) Temporal changes in soil microbial properties and nutrient dynamics under climate smart agriculture practices. Soil Tillage Res 199:104595

    Article  CAS  Google Scholar 

  • Jat HS, Datta A, Choudhary M, Sharma PC, Yadav AK, Choudhary V, McDonald A (2019) Climate Smart Agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of North-West India. Catena 181:104059

    Article  CAS  Google Scholar 

  • Jellason NP, Conway JS, Baines RN (2021) Understanding impacts and barriers to adoption of climate-smart agriculture (CSA) practices in North-Western Nigerian drylands. J Agric Educ Ext 27(1):55–72

    Article  Google Scholar 

  • Kakraliya SK, Jat HS, Singh I, Sapkota TB, Singh LK, Sutaliya JM, Jat ML (2018) Performance of portfolios of climate smart agriculture practices in a rice-wheat system of western Indo-Gangetic plains. Agric Water Manag 202:122–133

    Article  Google Scholar 

  • Karlsson L, Naess LO, Nightingale A, Thompson J (2018) ‘Triple wins’ or ‘triple faults’? Analysing the equity implications of policy discourses on climate-smart agriculture (CSA). J Peasant Stud 45(1):150–174

    Article  Google Scholar 

  • Khatri-Chhetri A, Aggarwal PK, Joshi PK, Vyas S (2017) Farmers’ prioritization of climate-smart agriculture (CSA) technologies. Agric Syst 151:184–191

    Article  Google Scholar 

  • Khoza S, van Niekerk D, Nemakonde L (2020) Rethinking climate-smart agriculture adoption for resilience-building among smallholder farmers: gender-sensitive adoption framework. African Handbook of Climate Change Adaptation, 1–22.

  • Komarek AM, Thurlow J, Koo J, De Pinto A (2019) Economywide effects of climate‐smart agriculture in Ethiopia. Agric Econ 50(6):765–778

    Article  Google Scholar 

  • Kpadonou RAB, Owiyo T, Barbier B, Denton F, Rutabingwa F, Kiema A (2017) Advancing climate-smart-agriculture in developing drylands: Joint analysis of the adoption of multiple on-farm soil and water conservation technologies in West African Sahel. Land Use Policy 61:196–207

    Article  Google Scholar 

  • Kumar A, Sah B, Singh AR, Deng Y, He X, Kumar P, Bansal RC (2017) A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew Sustain Energy Rev 69:596–609

    Article  Google Scholar 

  • Launer RL, Wilkinson GN (Eds.). (2014) Robustness in statistics. Academic Press.

  • Lipper L, Zilberman D (2018) A short history of the evolution of the climate smart agriculture approach and its links to climate change and sustainable agriculture debates. In Climate smart agriculture (pp. 13–30). Springer, Cham.

  • Lipper L, McCarthy N, Zilberman D, Asfaw S, Branca G (2017) Climate smart agriculture: building resilience to climate change (p. 630). Springer Nature.

  • Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, Bwalya M, Torquebiau EF (2014) Climate-smart agriculture for food security. Nat Clim change 4(12):1068–1072

    Article  Google Scholar 

  • Long TB, Blok V, Coninx I (2016) Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: evidence from the Netherlands, France, Switzerland and Italy. J Clean Prod 112:9–21

    Article  Google Scholar 

  • Long TB, Blok V, Poldner K (2017) Business models for maximising the diffusion of technological innovations for climate-smart agriculture. Int Food Agribus Manag Rev 20(1):5–23

    Article  Google Scholar 

  • López ID, Grass JF, Figueroa A, Corrales JC (2020) A proposal for a multi‐domain data fusion strategy in a climate‐smart agriculture context. Int Trans Operational Res Early cite version. https://doi.org/10.1111/itor.12899

  • Lopez-Ridaura S, Frelat R, van Wijk MT, Valbuena D, Krupnik TJ, Jat ML (2018) Climate smart agriculture, farm household typologies and food security: an ex-ante assessment from Eastern India. Agric Syst 159:57–68

    Article  Google Scholar 

  • Magrini A (2022) Assessment of agricultural sustainability in European Union countries: a group-based multivariate trajectory approach. AStA Adv Stat Analysis 1–31.

  • Makate C (2019) Effective scaling of climate smart agriculture innovations in African smallholder agriculture: a review of approaches, policy and institutional strategy needs. Environ Sci Policy 96:37–51

    Article  Google Scholar 

  • Makate C, Makate M, Mango N, Siziba S (2019) Increasing resilience of smallholder farmers to climate change through multiple adoption of proven climate-smart agriculture innovations. Lessons from Southern Africa. J Environ Manag 231:858–868

    Article  Google Scholar 

  • Makate C, Makate M, Mango N, Siziba S (2019) Increasing resilience of smallholder farmers to climate change through multiple adoption of proven climate-smart agriculture innovations. Lessons from Southern Africa. J Environ Manag 231:858–868

    Article  Google Scholar 

  • Makate M, Nelson N, Makate C (2018) Farm household typology and adoption of climate-smart agriculture practices in smallholder farming systems of southern Africa. Afr J Sci Technol Innov Dev 10(4):421–439

    Article  Google Scholar 

  • Mangaza L, Sonwa DJ, Batsi G, Ebuy J, Kahindo JM (2021) Building a framework towards climate-smart agriculture in the Yangambi landscape, Democratic Republic of Congo (DRC). Int J Clim Change Strategies Manag.

  • Mango N, Makate C, Tamene L, Mponela P, Ndengu G (2018) Adoption of small-scale irrigation farming as a climate-smart agriculture practice and its influence on household income in the Chinyanja Triangle, Southern. Afr Land 7(2):49

    Article  Google Scholar 

  • McNunn G, Karlen DL, Salas W, Rice CW, Mueller S, Muth Jr D, Seale JW (2020) Climate smart agriculture opportunities for mitigating soil greenhouse gas emissions across the US Corn-Belt. J Clean Prod 268:122240

    Article  CAS  Google Scholar 

  • Monfort P (2008) Convergence of EU regions: Measures and evolution. Brussels: European Commission, Regional Policy.

  • Montresor E, Pecci F, Pontarollo N (2011) The convergence process of the European regions: the role of Regional Policy and the Common Agricultural Policy. Stud Agric Econ 113(1316-2016-102774):167–177

    Article  Google Scholar 

  • Morkunas M, Balezentis T (2021) Is agricultural revitalization possible through the climate-smart agriculture: a systematic review and citation-based analysis. Manag Environ Qual: Int J 33(2):257–280

    Article  Google Scholar 

  • Morkūnas M, Volkov A, Bilan Y, Raišienė AG (2018) The role of government in forming agricultural policy: economic resilience measuring index exploited. Administratie si Manag Public 31:111–131

    Google Scholar 

  • Mudashiru A, Solomon AS, Onyohu HC, Olusegun BS, Daniel E, Samuel AB, Tunde HM (2021) Analysis of climate smart agricultural practices among maize farmers in funtua agricultural development zone of Katsina state, Nigeria. Int J Agric Econ 6(2):71

    Google Scholar 

  • Mujeyi A, Mudhara M, Mutenje M (2021) The impact of climate smart agriculture on household welfare in smallholder integrated crop–livestock farming systems: evidence from Zimbabwe. Agriculture Food Security 10(1):1–15

    Article  Google Scholar 

  • Murray U, Gebremedhin Z, Brychkova G, Spillane C (2016) Smallholder farmers and climate smart agriculture: technology and labor-productivity constraints amongst women smallholders in Malawi. Gend Technol Dev 20(2):117–148

    Article  Google Scholar 

  • Mutenje MJ, Farnworth CR, Stirling C, Thierfelder C, Mupangwa W, Nyagumbo I (2019) A cost-benefit analysis of climate-smart agriculture options in Southern Africa: Balancing gender and technology. Ecol Econ 163:126–137

    Article  Google Scholar 

  • Mwongera C, Shikuku KM, Twyman J, Läderach P, Ampaire E, Van Asten P, Winowiecki LA (2017) Climate smart agriculture rapid appraisal (CSA-RA): a tool for prioritizing context-specific climate smart agriculture technologies. Agric Syst 151:192–203

    Article  Google Scholar 

  • Nelson S, Huyer S (2016) A gender-responsive approach to climate-smart agriculture: evidence and guidance for practitioners. Climate-Smart Agriculture Practice Brief. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

  • Neufeldt H, Jahn M, Campbell BM, Beddington JR, DeClerck F, De Pinto A, Zougmoré R (2013) Beyond climate-smart agriculture: toward safe operating spaces for global food systems. Agriculture Food Security 2(1):1–6

    Article  Google Scholar 

  • Newell P, Taylor O, Naess LO, Thompson J, Mahmoud H, Ndaki P, Teshome A (2019) Climate smart agriculture? Governing the sustainable development goals in Sub-Saharan Africa. Front Sustain Food Syst 55.

  • Ngoma H, Pelletier J, Mulenga BP, Subakanya M (2021) Climate-smart agriculture, cropland expansion and deforestation in Zambia: Linkages, processes and drivers. Land Use Policy 107:105482

    Article  Google Scholar 

  • Nyambo P, Mupambwa HA, Nciizah AD (2020) Biochar enhances the capacity of climate-smart agriculture to mitigate climate change. Handbook of Climate Change Management: Research, Leadership, Transformation, 1–18.

  • Nyasimi M, Kimeli P, Sayula G, Radeny M, Kinyangi J, Mungai C (2017) Adoption and dissemination pathways for climate-smart agriculture technologies and practices for climate-resilient livelihoods in Lushoto. Northeast Tanzan Clim 5(3):63

    Google Scholar 

  • Nowak A, Krukowski A, Różańska-Boczula M (2019) Assessment of sustainability in agriculture of the European Union countries. Agronomy 9(12):890

    Article  Google Scholar 

  • Ogada MJ, Rao EJ, Radeny M, Recha JW, Solomon D (2020) Climate-smart agriculture, household income and asset accumulation among smallholder farmers in the Nyando basin of Kenya. World Dev Perspect 18:100203

    Article  Google Scholar 

  • O’Grady M, Langton D, Salinari F, Daly P, O’Hare G (2021) Service design for climate-smart agriculture. Inf Process Agriculture 8(2):328–340

    Article  Google Scholar 

  • Opricovic S, Tzeng GH (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Operational Res 156(2):445–455

    Article  Google Scholar 

  • Osorio-García AM, Paz L, Howland F, Ortega LA, Acosta-Alba I, Arenas L, Andrieu N (2020) Can an innovation platform support a local process of climate-smart agriculture implementation? A case study in Cauca, Colombia. Agroecology Sustain Food Syst 44(3):378–411

    Article  Google Scholar 

  • Pagliacci F, Defrancesco E, Mozzato D, Bortolini L, Pezzuolo A, Pirotti F, Gatto P (2020) Drivers of farmers’ adoption and continuation of climate-smart agricultural practices. A study from northeastern Italy. Sci Total Environ 710:136345

    Article  CAS  Google Scholar 

  • Pamučar D, Stević Ž, Zavadskas EK (2018) Integration of interval rough AHP and interval rough MABAC methods for evaluating university web pages. Appl Soft Comput 67:141–163

    Article  Google Scholar 

  • Partey ST, Zougmoré RB, Ouédraogo M, Campbell BM (2018) Developing climate-smart agriculture to face climate variability in West Africa: challenges and lessons learnt. J Clean Prod 187:285–295

    Article  Google Scholar 

  • Paudyal BR, Chanana N, Khatri-Chhetri A, Sherpa L, Kadariya I, Aggarwal P (2019) Gender integration in climate change and agricultural policies: The case of Nepal. Front Sustain Food Syst 3:66

    Article  Google Scholar 

  • Podvezko V, Podviezko A(2014) Kriterijų reikšmingumo nustatymo metodai Liet matematikų draugijos Darb 55(ser. B):111–116

    Google Scholar 

  • Prestele R, Verburg PH (2020) The overlooked spatial dimension of climate‐smart agriculture. Glob Change Biol 26(3):1045–1054

    Article  Google Scholar 

  • Raile ED, Young LM, Sarr A, Mbaye S, Raile AN, Wooldridge L, Post LA (2019) Political will and public will for climate-smart agriculture in Senegal: Opportunities for agricultural transformation. J Agribus Developing Emerg Economies 9(1):44–62

    Article  Google Scholar 

  • Rybaczewska-Błażejowska M, Gierulski W (2018) Eco-efficiency evaluation of agricultural production in the EU-28. Sustainability 10(12):4544

    Article  Google Scholar 

  • Ronchi S, Salata S, Arcidiacono A, Piroli E, Montanarella L (2019) Policy instruments for soil protection among the EU member states: a comparative analysis. Land Use Policy 82:763–780

    Article  Google Scholar 

  • Rosenstock TS, Lamanna C, Namoi N, Arslan A, Richards M (2019) What is the evidence base for climate-smart agriculture in East and Southern Africa? A systematic map. In The climate-smart agriculture papers (pp. 141–151). Springer, Cham.

  • Sain G, Loboguerrero AM, Corner-Dolloff C, Lizarazo M, Nowak A, Martínez-Barón D, Andrieu N (2017) Costs and benefits of climate-smart agriculture: the case of the Dry Corridor in Guatemala. Agric Syst 151:163–173

    Article  Google Scholar 

  • Saj S, Torquebiau E, Hainzelin E, Pages J, Maraux F (2017) The way forward: an agroecological perspective for climate-smart agriculture. Agriculture Ecosyst Environ 250:20–24

    Article  Google Scholar 

  • Sala S, Rossi F, David S (2016) Supporting agricultural extension towards climate-smart agriculture: an overview of existing tools. A compendium Supporting agricultural extension towards climate-smart agriculture: an overview of existing tools. Global Alliance for Climate Smart Agriculture (GACSA), CABI abstracts, pp 88

  • Salvini G, Ligtenberg A, Van Paassen A, Bregt AK, Avitabile V, Herold M (2016) REDD+ and climate smart agriculture in landscapes: a case study in Vietnam using companion modelling. J Environ Manag 172:58–70

    Article  CAS  Google Scholar 

  • Salvini G, Van Paassen A, Ligtenberg A, Carrero GC, Bregt AK (2016) A role-playing game as a tool to facilitate social learning and collective action towards Climate smart agriculture: lessons learned from Apuí, Brazil. Environ Sci Policy 63:113–121

    Article  Google Scholar 

  • Sardar A, Kiani AK, Kuslu Y (2021) Does adoption of climate-smart agriculture (CSA) practices improve farmers’ crop income? Assessing the determinants and its impacts in Punjab province, Pakistan. Environ Dev Sustainability 23(7):10119–10140

    Article  Google Scholar 

  • Sarker MNI, Wu M, Alam GM, Islam MS (2019) Role of climate smart agriculture in promoting sustainable agriculture: a systematic literature review. Int J Agric Resour Gov Ecol 15(4):323–337

    Google Scholar 

  • Scherer L, Verburg PH (2017) Mapping and linking supply-and demand-side measures in climate-smart agriculture. A review. Agron Sustain Dev 37(6):1–17

    Article  Google Scholar 

  • Schneider F, Morkunas M, Quendler E (2022) An estimation of the informal economy in the agricultural sector in the EU‐15 from 1996 to 2019. Agribusiness. Early view. https://doi.org/10.1002/agr.21774

  • Scholz SB, Sembres T, Roberts K, Whitman T, Wilson K, Lehmann J (2014) Biochar systems for smallholders in developing countries: leveraging current knowledge and exploring future potential for climate-smart agriculture. World Bank Publications.

  • Scown MW, Brady MV, Nicholas KA (2020) Billions in misspent EU agricultural subsidies could support the sustainable development goals. One Earth 3(2):237–250

    Article  Google Scholar 

  • Senyolo MP, Long TB, Blok V, Omta O (2018) How the characteristics of innovations impact their adoption: an exploration of climate-smart agricultural innovations in South Africa. J Clean Prod 172:3825–3840

    Article  Google Scholar 

  • Shahzad MF, Abdulai A (2021) The heterogeneous effects of adoption of climate-smart agriculture on household welfare in Pakistan. Appl Econ 53(9):1013–1038

    Article  Google Scholar 

  • Shaw A, Wilson K (2020) The Bill and Melinda Gates Foundation and the necro-populationism of ‘climate-smart’agriculture. Gend Place Cult 27(3):370–393

    Article  Google Scholar 

  • Shilomboleni H (2020) Political economy challenges for climate smart agriculture in Africa. Agriculture Hum Values 37(4):1195–1206

    Article  Google Scholar 

  • Siddi M (2020). The European Green Deal: asseasing its current state and future implementation.

  • Simionescu M (2014) Testing sigma convergence across EU-28. Econ Sociol 7(1):48–60

    Article  Google Scholar 

  • Sitaula BK, Žurovec O, Luitel BC, Parker A, Lal, R (2020) Need for personal transformations in a changing climate: reflections on environmental change and climate-smart agriculture in Africa. In Climate impacts on agricultural and natural resource sustainability in Africa (pp. 347–370). Springer, Cham

  • Song M, Zhu Q, Peng J, Gonzalez EDS (2017) Improving the evaluation of cross efficiencies: a method based on Shannon entropy weight. Computers Ind Eng 112:99–106

    Article  Google Scholar 

  • Sovacool BK, Kester J, Heida V (2019) Cars and kids: childhood perceptions of electric vehicles and sustainable transport in Denmark and the Netherlands. Technol Forecast Soc Change 144:182–192

    Article  Google Scholar 

  • Streimikis J, Miao Z, Balezentis T (2021) Creation of climate‐smart and energy‐efficient agriculture in the European Union: pathways based on the frontier analysis. Bus Strategy Environ 30(1):576–589

    Article  Google Scholar 

  • Strielkowski W, Höschle F (2016) Evidence for economic convergence in the EU: the analysis of past EU enlargements. Technol Economic Dev Econ 22(4):617–630

    Article  Google Scholar 

  • Sutherland C, Gleim S, Smyth SJ (2021) Correlating genetically modified crops, glyphosate use and increased carbon sequestration. Sustainability 13(21):11679

    Article  CAS  Google Scholar 

  • Székely IP, Kuenzel R (2021) Convergence of the EU Member States in Central-Eastern and South Eastern Europe (EU11): A Framework for Convergence Inside a Close Regional Cooperation. Does EU Membership Facilitate Convergence? The Experience of the EU’s Eastern Enlargement-Volume I: Overall Trends and Country Experiences, 27–90.

  • Tadesse M, Simane B, Abera W, Tamene L, Ambaw G, Recha JW, Solomon D (2021) The effect of climate-smart agriculture on soil fertility, crop yield, and soil carbon in southern Ethiopia. Sustainability 13(8):4515

    Article  CAS  Google Scholar 

  • Taylor M (2018) Climate-smart agriculture: what is it good for? J Peasant Stud 45(1):89–107

    Article  Google Scholar 

  • Tankha S, Fernandes D, Narayanan NC (2020) Overcoming barriers to climate smart agriculture in India. Int J Clim Change Strateg Manag 12(1):108–127

    Article  Google Scholar 

  • Tenzin S, Siyang S, Pobkrut T, Kerdcharoen T (2017) Low cost weather station for climate-smart agriculture. In 2017 9th international conference on knowledge and smart technology (KST) (pp. 172–177). IEEE.

  • Tong Q, Swallow B, Zhang L, Zhang J (2019) The roles of risk aversion and climate-smart agriculture in climate risk management: evidence from rice production in the Jianghan Plain. China Clim Risk Manag 26:100199

    Google Scholar 

  • Totin E, Segnon AC, Schut M, Affognon H, Zougmoré RB, Rosenstock T, Thornton PK (2018) Institutional perspectives of climate-smart agriculture: a systematic literature review. Sustainability 10(6):1990

    Article  Google Scholar 

  • Tran NLD, Rañola RF, Sander BO, Reiner W, Nguyen DT, Nong NKN (2020) Determinants of adoption of climate-smart agriculture technologies in rice production in Vietnam. Int J Clim Change Strateg Manag 12(2):238–256

    Article  Google Scholar 

  • Tsige M, Synnevåg G, Aune JB (2020) Gendered constraints for adopting climate-smart agriculture amongst smallholder Ethiopian women farmers. Sci Afr 7:e00250

    Google Scholar 

  • Vaidya OS, Kumar S (2006) Analytic hierarchy process: an overview of applications. Eur J Operational Res 169(1):1–29

    Article  Google Scholar 

  • Venturelli A, Pizzi S, Caputo F, Principale S (2020) The revision of nonfinancial reporting directive: a critical lens on the comparability principle. Bus Strategy Environ 29(8):3584–3597

    Article  Google Scholar 

  • Verschuuren J (2018) Towards an EU regulatory framework for climate-smart agriculture: the example of soil carbon sequestration. Transnatl Environ Law 7(2):301–322

    Article  Google Scholar 

  • Villaverde Castro J (2004) Indicators of real economic convergence, A. Primer, UNU CRISE, Working papers, W-2004/2

  • Vitunskiene V, Dabkiene V (2016) Framework for assessing the farm relative sustainability: a Lithuanian case study. Agric Econ 62(3):134–148

    Google Scholar 

  • Volkov A, Balezentis T, Morkunas M, Streimikiene D (2019) In a search for equity: do direct payments under the Common Agricultural Policy induce convergence in the European Union? Sustainability 11(12):3462

    Article  Google Scholar 

  • Volkov A, Morkunas M, Balezentis T, Streimikiene D (2022) Are agricultural sustainability and resilience complementary notions? Evidence from the North European agriculture. Land Use Policy 112:105791

    Article  Google Scholar 

  • Volkov A, Žičkienė A, Morkunas M, Baležentis T, Ribašauskienė E, Streimikiene D (2021) A Multi-criteria approach for assessing the economic resilience of agriculture: the case of Lithuania. Sustainability 13(4):2370

    Article  Google Scholar 

  • Waaswa A, Oywaya Nkurumwa A, Mwangi Kibe A, Ngeno Kipkemoi J (2022) Climate-Smart agriculture and potato production in Kenya: review of the determinants of practice. Clim Dev 14(1):75–90

    Article  Google Scholar 

  • Wambugu C, Franzel S, Rioux J (2014) Options for climate-smart agriculture at Kaptumo site in Kenya. World Agroforestry Centre

  • Wassmann R, Villanueva J, Khounthavong M, Okumu BO, Vo TBT, Sander BO (2019) Adaptation, mitigation and food security: multi-criteria ranking system for climate-smart agriculture technologies illustrated for rainfed rice in Laos. Glob Food Security 23:33–40

    Article  Google Scholar 

  • Westermann O, Förch W, Thornton P, Körner J, Cramer L, Campbell B (2018) Scaling up agricultural interventions: case studies of climate-smart agriculture. Agric Syst 165:283–293

    Article  Google Scholar 

  • Wichmann S (2018) Economic incentives for climate smart agriculture on peatlands in the EU. Proc Greifswald Mire Cent 1:2018

    Google Scholar 

  • Xin Y, Tao F (2021) Have the agricultural production systems in the North China Plain changed towards to climate smart agriculture since 2000? J Clean Prod 299:126940

    Article  CAS  Google Scholar 

  • Xiong W, van der Velde M, Holman IP, Balkovic J, Lin E, Skalský R, Obersteiner M (2014) Can climate-smart agriculture reverse the recent slowing of rice yield growth in China? Agriculture Ecosyst Environ 196:125–136

    Article  Google Scholar 

  • Zerssa G, Feyssa D, Kim DG, Eichler-Löbermann B (2021) Challenges of smallholder farming in Ethiopia and opportunities by adopting climate-smart agriculture. Agriculture 11(3):192

    Article  CAS  Google Scholar 

  • Zougmoré RB, Läderach P, Campbell BM (2021) Transforming food systems in Africa under climate change pressure: role of climate-smart agriculture. Sustainability 13(8):4305

    Article  Google Scholar 

  • Zougmoré RB, Partey ST, Ouédraogo M, Torquebiau E, Campbell BM (2018) Facing climate variability in sub-Saharan Africa: analysis of climate-smart agriculture opportunities to manage climate-related risks. Cah Agricultures (TSI) 27(3):1–9

    Google Scholar 

  • Zougmoré RB, Partey ST, Totin E, Ouédraogo M, Thornton P, Karbo N, Campbell BM (2019) Science-policy interfaces for sustainable climate-smart agriculture uptake: lessons learnt from national science-policy dialogue platforms in West Africa. Int J Agric Sustainability 17(5):367–382

    Article  Google Scholar 

  • Zougmoré R, Partey S, Ouédraogo M, Omitoyin B, Thomas T, Ayantunde A, Jalloh A (2016) Toward climate-smart agriculture in West Africa: a review of climate change impacts, adaptation strategies and policy developments for the livestock, fishery and crop production sectors. Agriculture Food Security 5(1):1–16

  • Koczkodaj WW (2016) Pairwise comparisons rating scale paradox. In Transactions on Computational Collective Intelligence XXII (pp. 1–9). Springer, Berlin, Heidelberg

  • Shilomboleni H (2022) Political economy challenges for climate smart agriculture in Africa. In Social Innovation and Sustainability Transition (pp. 261–272). Springer, Cham

  • Libby R, Blashfield R K (1978) Performance of a composite as a function of the number of judges. Organizational Behavior and Human Performance 21(2):121–129

    Article  Google Scholar 

Download references

Funding

This project has received funding from European Social Fund (project No 09.3.3-LMT-K-712-19-0086) under grant agreement with the Research Council of Lithuania (LMT LT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangirdas Morkunas.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morkunas, M., Volkov, A. The Progress of the Development of a Climate-smart Agriculture in Europe: Is there Cohesion in the European Union?. Environmental Management 71, 1111–1127 (2023). https://doi.org/10.1007/s00267-022-01782-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-022-01782-w

Keywords

Navigation