Skip to main content
Log in

Navigation improves the learning curve of transforamimal percutaneous endoscopic lumbar discectomy

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Beginners usually need increased punctures and dozens of fluoroscopy in learning transforamimal percutaneous endoscopic lumbar discectomy (tPELD). Navigator-assisted spinal surgery (NASS) is a novel technique that could induce a definite trajectory. The retrospective study aimed to investigate the impact of a definite trajectory on the learning curve of tPELD.

Methods

A total of 120 patients with symptomatic lumbar disc herniation who received tPELD between 2012 and 2014. Patients receiving tPELD with NASS technique by one surgeon were regarded as group A, and those receiving conventional methods by another surgeon were regarded as group B. Each group was divided into three subgroups (case 1–20, case 21–40, case 41–60).

Results

The fluoroscopy times were 22.62 ± 3.80 in group A and 34.32 ± 4.78 in group B (P < 0.001). The pre-operative location time was 3.56 ± 0.60 minutes in group A and 5.49 ± 1.48 minutes in group B (P < 0.001). The puncture-channel time was 21.85 ± 4.31 minutes in group A and 34.20 ± 8.88 minutes in group B (P < 0.001). The operation time was 84.62 ± 9.20 minutes in group A and 101.97 ± 14.92 minutes in group B (P < 0.001), and the learning curve of tPELD in group A was steeper than that in group B. No significant differences were detected in patient-reported outcomes, hospital stay, patient satisfaction, and complication rate between the two groups (p > 0.05).

Conclusions

Definite trajectory significantly reduced the operation time, preoperative location time, puncture-channel time, and fluoroscopy times of tPELD by beginners, and thus reshaped the learning curve of tPELD and minimized the radiation exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fan G, Han R, Zhang H, He S, Chen Z (2015) Worldwide research productivity in the field of minimally invasive spine surgery: a 20-year survey of publication activities. Spine (Phila Pa 1976). doi:10.1097/brs.0000000000001393

    Google Scholar 

  2. Zheng C, Wu F, Cai L (2016) Transforaminal percutaneous endoscopic discectomy in the treatment of far-lateral lumbar disc herniations in children. Int Orthop. doi:10.1007/s00264-016-3155-x

    Google Scholar 

  3. Wang K, Hong X, Zhou B-Y, Bao J-P, Xie X-H, Wang F, Wu X-T (2015) Evaluation of transforaminal endoscopic lumbar discectomy in the treatment of lumbar disc herniation. Int Orthop 39:1599–1604. doi:10.1007/s00264-015-2747-1

    Article  PubMed  Google Scholar 

  4. Ahn Y, Lee SH, Park WM, Lee HY (2003) Posterolateral percutaneous endoscopic lumbar foraminotomy for L5-S1 foraminal or lateral exit zone stenosis. Technical note. J Neurosurg 99:320–323

    Article  PubMed  Google Scholar 

  5. Du J, Tang X, Jing X, Li N, Wang Y, Zhang X (2016) Outcomes of percutaneous endoscopic lumbar discectomy via a translaminar approach, especially for soft, highly down-migrated lumbar disc herniation. Int Orthop. doi:10.1007/s00264-016-3177-4

    Google Scholar 

  6. Ahn Y, Kim CH, Lee JH, Lee SH, Kim JS (2013) Radiation exposure to the surgeon during percutaneous endoscopic lumbar discectomy: a prospective study. Spine (Phila Pa 1976) 38:617–625. doi:10.1097/BRS.0b013e318275ca58

    Article  Google Scholar 

  7. Choi G, Modi HN, Prada N, Ahn TJ, Myung SH, Gang MS, Lee SH (2013) Clinical results of XMR-assisted percutaneous transforaminal endoscopic lumbar discectomy. J Orthop Surg Res 8:14. doi:10.1186/1749-799x-8-14

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ruetten S, Komp M, Merk H, Godolias G (2007) Use of newly developed instruments and endoscopes: full-endoscopic resection of lumbar disc herniations via the interlaminar and lateral transforaminal approach. J Neurosurg Spine 6:521–530. doi:10.3171/spi.2007.6.6.2

    Article  PubMed  Google Scholar 

  9. Kafadar A, Kahraman S, Akboru M (2006) Percutaneous endoscopic transforaminal lumbar discectomy: a critical appraisal. Minim Invasive Neurosurg 49:74–79. doi:10.1055/s-2006-932184

    Article  CAS  PubMed  Google Scholar 

  10. Lee DY, Lee SH (2008) Learning curve for percutaneous endoscopic lumbar discectomy. Neurol Med Chir (Tokyo) 48:383–388, discussion 388–389

    Article  Google Scholar 

  11. Wang H, Huang B, Li C, Zhang Z, Wang J, Zheng W, Zhou Y (2013) Learning curve for percutaneous endoscopic lumbar discectomy depending on the surgeon’s training level of minimally invasive spine surgery. Clin Neurol Neurosurg 115:1987–1991. doi:10.1016/j.clineuro.2013.06.008

    Article  PubMed  Google Scholar 

  12. Wang B, Lü G, Patel AA, Ren P, Cheng I (2011) An evaluation of the learning curve for a complex surgical technique: the full endoscopic interlaminar approach for lumbar disc herniations. Spine J 11:122–130. doi:10.1016/j.spinee.2010.12.006

    Article  PubMed  Google Scholar 

  13. Hsu H-T, Chang S-J, Yang SS, Chai CL (2012) Learning curve of full-endoscopic lumbar discectomy. Eur Spine J 22:727–733. doi:10.1007/s00586-012-2540-4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chaichankul C, Poopitaya S, Tassanawipas W (2012) The effect of learning curve on the results of percutaneous transforaminal endoscopic lumbar discectomy. J Med Assoc Thai 95(Suppl 10):S206–212

    PubMed  Google Scholar 

  15. Gu G, Zhang H, He S, Jia J, Fu Q, Zhou X (2013) Preoperative localization methods for minimally invasive surgery in lumbar spine: comparisons between a novel method and conventional methods. J Spinal Disord Tech 26:E277–280. doi:10.1097/BSD.0b013e31828677d8

    Article  PubMed  Google Scholar 

  16. Gibson JNA, Cowie JG, Iprenburg M (2012) Transforaminal endoscopic spinal surgery: the future ‘gold standard’ for discectomy? – a review. Surgeon 10:290–296. doi:10.1016/j.surge.2012.05.001

    Article  PubMed  Google Scholar 

  17. Nellensteijn J, Ostelo R, Bartels R, Peul W, Van Royen B, Van Tulder M (2010) Transforaminal endoscopic surgery for symptomatic lumbar disc herniations: a systematic review of the literature. Eur Spine J 19:181–204. doi:10.1007/s00586-009-1155-x

    Article  PubMed  Google Scholar 

  18. Benzel EC, Orr RD (2011) A steep learning curve is a good thing! Spine J 11:131–132. doi:10.1016/j.spinee.2010.12.012

    Article  PubMed  Google Scholar 

  19. Chakraverty RPP, Isaacs K (2007) Which spinal levels are identified by palpation of the iliac crests and the posterior superior iliac spines? J Anat 210:232–236

    Article  PubMed  PubMed Central  Google Scholar 

  20. Paolini S, Ciappetta P, Missori P, Raco A, Delfini R (2005) Spinous process marking: a reliable method for preoperative surface localization of intradural lesions of the high thoracic spine. Br J Neurosurg 19:74–76. doi:10.1080/02688690500089209

    Article  CAS  PubMed  Google Scholar 

  21. Srinivasan D, Than KD, Wang AC, La Marca F, Wang PI, Schermerhorn TC, Park P (2014) Radiation safety and spine surgery systematic review of exposure limits and methods to minimize radiation exposure. World Neurosurg. doi:10.1016/j.wneu.2014.07.041

    PubMed  Google Scholar 

  22. Hoogland T, Schubert M, Miklitz B, Ramirez A (2006) Transforaminal posterolateral endoscopic discectomy with or without the combination of a low-dose chymopapain: a prospective randomized study in 280 consecutive cases. Spine (Phila Pa 1976) 31:E890–897. doi:10.1097/01.brs.0000245955.22358.3a

    Article  Google Scholar 

  23. Xin G, Shi-Sheng H, Hai-Long Z (2013) Morphometric analysis of the YESS and TESSYS techniques of percutaneous transforaminal endoscopic lumbar discectomy. Clin Anat 26:728–734. doi:10.1002/ca.22286

    Article  PubMed  Google Scholar 

  24. Guan X, Gu X, Zhang L, Wu X, Zhang H, He S, Gu G, Fan G, Fu Q (2015) Morphometric analysis of the working zone for posterolateral endoscopic lumbar discectomy based on magnetic resonance neurography. J Spinal Disord Tech 28:E78–84. doi:10.1097/bsd.0000000000000145

    Article  PubMed  Google Scholar 

  25. Fan G, Fu Q, Wu X, Guan X, Gu G, Yu S, Zhang H, He S (2015) Patient and operating room personnel radiation exposure in spinal surgery. Spine J 15:797–799. doi:10.1016/j.spinee.2014.09.034

    Article  PubMed  Google Scholar 

  26. Buckland AJ, Baker JF, Roach RP, Spivak JM (2016) Cervical disc replacement - emerging equivalency to anterior cervical discectomy and fusion. Int Orthop 40:1329–1334. doi:10.1007/s00264-016-3181-8

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thanks the nurses who help us collect the clinical data, and further-education physicians who recorded the sequential fluoroscopy films. No funds were received in support of this work. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shisheng He.

Ethics declarations

Funding

None.

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, G., Han, R., Gu, X. et al. Navigation improves the learning curve of transforamimal percutaneous endoscopic lumbar discectomy. International Orthopaedics (SICOT) 41, 323–332 (2017). https://doi.org/10.1007/s00264-016-3281-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-016-3281-5

Keywords

Navigation