Skip to main content

Advertisement

Log in

Anti-angiogenesis therapy overcomes the innate resistance to PD-1/PD-L1 blockade in VEGFA-overexpressed mouse tumor models

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The effectual clinical benefits of immune checkpoint inhibitor (ICI) are hampered by a high rate of innate resistance, and VEGFA may contribute to ICI treatment resistance. In this study, we endeavored to assess the tumor microenvironment (TME) in VEGFA-overexpressed human tumors and mouse tumor models, and to explore whether anti-angiogenesis therapy can overcome the innate resistance to ICI in hyperangiogenesis mouse tumor models and the underlying mechanism. Effect of VEGFA on clinical prognosis and TME was analyzed using TCGA data. The VEGFA-overexpressed mouse breast and colon subcutaneous models were established. PD-1 mAb or apatinib alone and combination therapy were used. Immunohistochemistry and immunofluorescence were used to assess angiogenesis and hypoxia. Flow cytometry, RNA sequencing and MCP-counter were applied to detect tumor immunomicroenvironment. High level of VEGFA mRNA in human tumors is related to poor prognosis and hypoxic, angiogenic and immunosuppressive TME. Upregulation of VEGFA increased the degree of malignancy of tumor cells in vitro and in vivo. VEGFA-overexpressed models were characterized by hypoxic, hyperangiogenic and immunosuppressive TME and indicated innate resistance to ICI. In tumor-bearing mice without VEGFA overexpression, the combination therapy had no synergistic anti-tumor effect compared to monotherapy. However, apatinib alleviated hyperangiogenesis and hypoxia in TME and converted the immunosuppressive TME into an immunostimulatory one in VEGFA-overexpressed tumors. Thus, anti-angiogenesis therapy could improve the efficiency of ICI in VEGFA-overexpressed tumors. Revealing whether there is hypervascularization in tumor tissues may help to clarify the adoption of anti-angiogenesis and ICI combination therapy or ICI monotherapy in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AA:

Anti-angiogenesis

GSEA:

Gene set enrichment analysis

ICI:

Immune checkpoint inhibitor

ICER:

Incremental cost-effectiveness ratio

IPRES:

Innate anti-PD-1 resistance

KI:

Tyrosine kinase inhibitor

LAG-3:

Lymphocyte activation gene-3

MDSCs:

Myeloid-derived suppressor cells

MVD:

Microvascular density

ORR:

Objective response rates

OS:

Overall survival

PD-1:

Programmed cell death 1

PD-L1:

Programmed cell death ligand 1

QALY:

Quality-adjusted life-year

RCC:

Renal cell carcinoma

TCGA:

The Cancer Genome Atlas database

TIGIT:

T cell immunoreceptor with Ig and ITIM domain

TILs:

Tumor-infiltrating lymphocytes

TIM-3:

T cell immunoglobulin and mucin-domain containing-3

TME:

Tumor microenvironment

TOX:

Thymocyte selection-associated HMG box protein

Tregs:

T regulatory cells

TRAE:

Treatment-related adverse effect

UCSC:

University of California Santa Cruz database

VEGFA:

Vascular endothelial growth factor A

References

  1. Zou W, Wolchok JD, Chen L (2016) PD-L1 (B7–H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Science translational medicine 8(328):328rv324. https://doi.org/10.1126/scitranslmed.aad7118

    Article  CAS  Google Scholar 

  2. Abril-Rodriguez G, Ribas A (2017) SnapShot: immune checkpoint inhibitors. Cancer Cell 31(6):848–848.e841. https://doi.org/10.1016/j.ccell.2017.05.010

    Article  PubMed  CAS  Google Scholar 

  3. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61. https://doi.org/10.1126/science.aaa8172

    Article  CAS  PubMed  Google Scholar 

  4. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. https://doi.org/10.1056/NEJMoa1003466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454. https://doi.org/10.1056/NEJMoa1200690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369(2):134–144. https://doi.org/10.1056/NEJMoa1305133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wang Q, Wu X (2017) Primary and acquired resistance to PD-1/PD-L1 blockade in cancer treatment. Int Immunopharmacol 46:210–219. https://doi.org/10.1016/j.intimp.2017.03.015

    Article  PubMed  CAS  Google Scholar 

  8. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S et al (2016) Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma. Cell 165(1):35–44. https://doi.org/10.1016/j.cell.2016.02.065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Huang Y, Goel S, Duda DG, Fukumura D, Jain RK (2013) Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res 73(10):2943–2948. https://doi.org/10.1158/0008-5472.can-12-4354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  CAS  PubMed  Google Scholar 

  11. Viallard C, Larrivee B (2017) Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 20(4):409–426. https://doi.org/10.1007/s10456-017-9562-9

    Article  PubMed  CAS  Google Scholar 

  12. Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26(5):605–622. https://doi.org/10.1016/j.ccell.2014.10.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559–563. https://doi.org/10.1038/nature13490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949. https://doi.org/10.1038/nm1093

    Article  PubMed  CAS  Google Scholar 

  15. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61. https://doi.org/10.1016/j.immuni.2014.06.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP et al (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475(7355):226–230. https://doi.org/10.1038/nature10169

    Article  PubMed  CAS  Google Scholar 

  17. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S et al (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92(11):4150–4166

    Article  CAS  PubMed  Google Scholar 

  18. Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O et al (2013) VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Can Res 73(2):539–549. https://doi.org/10.1158/0008-5472.can-12-2325

    Article  CAS  Google Scholar 

  19. Palazón A, Aragonés J, Morales-Kastresana A, de Landázuri MO, Melero I (2012) Molecular pathways: hypoxia response in immune cells fighting or promoting cancer. Clin Cancer Res 18(5):1207–1213. https://doi.org/10.1158/1078-0432.ccr-11-1591

    Article  PubMed  Google Scholar 

  20. Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S et al (2003) VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101(12):4878–4886. https://doi.org/10.1182/blood-2002-07-1956

    Article  PubMed  CAS  Google Scholar 

  21. Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA et al (2016) Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov 6(8):827–837. https://doi.org/10.1158/2159-8290.cd-15-1545

    Article  PubMed  PubMed Central  Google Scholar 

  22. McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B et al (2018) Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med 24(6):749–757. https://doi.org/10.1038/s41591-018-0053-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Molife C, Hess LM, Cui ZL, Li XI, Beyrer J, Mahoui M et al (2019) Sequential therapy with ramucirumab and/or checkpoint inhibitors for non-small-cell lung cancer in routine practice. Future Oncol 15(25):2915–2931. https://doi.org/10.2217/fon-2018-0876

    Article  PubMed  CAS  Google Scholar 

  24. Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT et al (2019) Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med 380(12):1103–1115. https://doi.org/10.1056/NEJMoa1816047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Rini BI, Powles T, Atkins MB, Escudier B, McDermott DF, Suarez C et al (2019) Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 393(10189):2404–2415. https://doi.org/10.1016/s0140-6736(19)30723-8

    Article  PubMed  Google Scholar 

  26. Amin A, Plimack ER, Ernstoff MS, Lewis LD, Bauer TM, McDermott DF et al (2018) Safety and efficacy of nivolumab in combination with sunitinib or pazopanib in advanced or metastatic renal cell carcinoma: the CheckMate 016 study. J Immunother Cancer 6(1):109. https://doi.org/10.1186/s40425-018-0420-0

    Article  PubMed  PubMed Central  Google Scholar 

  27. Makker V, Rasco D, Vogelzang NJ, Brose MS, Cohn AL, Mier J et al (2019) Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an interim analysis of a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol 20(5):711–718. https://doi.org/10.1016/s1470-2045(19)30020-8

    Article  PubMed  CAS  Google Scholar 

  28. Arkenau HT, Martin-Liberal J, Calvo E, Penel N, Krebs MG, Herbst RS et al (2018) Ramucirumab plus pembrolizumab in patients with previously treated advanced or metastatic biliary tract cancer: nonrandomized, open-label, phase I trial (JVDF). Oncologist 23(12):1407–e1136. https://doi.org/10.1634/theoncologist.2018-0044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li J, Zhao X, Chen L, Guo H, Lv F, Jia K et al (2010) Safety and pharmacokinetics of novel selective vascular endothelial growth factor receptor-2 inhibitor YN968D1 in patients with advanced malignancies. BMC Cancer 10:529. https://doi.org/10.1186/1471-2407-10-529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fang S, Zhang M, Wei G, Lu KH (2018) Apatinib as a third- or further- line treatment in patients with advanced NSCLC harboring wild-type EGFR. Oncotarget 9(6):7175–7181. https://doi.org/10.18632/oncotarget.23612

    Article  PubMed  Google Scholar 

  31. Hu X, Zhang J, Xu B, Jiang Z, Ragaz J, Tong Z et al (2014) Multicenter phase II study of apatinib, a novel VEGFR inhibitor in heavily pretreated patients with metastatic triple-negative breast cancer. Int J Cancer 135(8):1961–1969. https://doi.org/10.1002/ijc.28829

    Article  PubMed  CAS  Google Scholar 

  32. Kong Y, Sun L, Hou Z, Zhang Y, Chen P, Cui Y et al (2017) Apatinib is effective for treatment of advanced hepatocellular carcinoma. Oncotarget 8(62):105596–105605. https://doi.org/10.18632/oncotarget.22337

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li F, Liao Z, Zhang C, Zhao J, Xing R, Teng S et al (2018) Apatinib as targeted therapy for sarcoma. Oncotarget 9(36):24548–24560. https://doi.org/10.18632/oncotarget.24647

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lin Y, Wang C, Gao W, Cui R, Liang J (2017) Overwhelming rapid metabolic and structural response to apatinib in radioiodine refractory differentiated thyroid cancer. Oncotarget 8(26):42252–42261. https://doi.org/10.18632/oncotarget.15036

    Article  PubMed  PubMed Central  Google Scholar 

  35. Miao M, Deng G, Luo S, Zhou J, Chen L, Yang J et al (2018) A phase II study of apatinib in patients with recurrent epithelial ovarian cancer. Gynecol Oncol 148(2):286–290

    Article  CAS  PubMed  Google Scholar 

  36. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4):782–795. https://doi.org/10.1016/j.immuni.2013.10.003

    Article  PubMed  CAS  Google Scholar 

  37. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17(1):218. https://doi.org/10.1186/s13059-016-1070-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Can Res 52(6):1399–1405

    CAS  Google Scholar 

  39. Corbett TH, Griswold DP Jr, Roberts BJ, Peckham JC, Schabel FM Jr (1975) Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note on carcinogen structure. Can Res 35(9):2434–2439

    CAS  Google Scholar 

  40. Alfei F, Kanev K, Hofmann M, Wu M, Ghoneim HE, Roelli P et al (2019) TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571(7764):265–269. https://doi.org/10.1038/s41586-019-1326-9

    Article  PubMed  CAS  Google Scholar 

  41. Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP et al (2019) TOX transcriptionally and epigenetically programs CD8(+) T cell exhaustion. Nature 571(7764):211–218. https://doi.org/10.1038/s41586-019-1325-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kim CG, Jang M, Kim Y, Leem G, Kim KH, Lee H et al (2019) VEGF-A drives TOX-dependent T cell exhaustion in anti-PD-1-resistant microsatellite stable colorectal cancers. Sci Immunol. https://doi.org/10.1126/sciimmunol.aay0555

    Article  PubMed  Google Scholar 

  43. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499. https://doi.org/10.1038/ni.2035

    Article  PubMed  CAS  Google Scholar 

  44. Petitprez F, Vano YA, Becht E, Giraldo NA, de Reynies A, Sautes-Fridman C et al (2018) Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies. Cancer Immunol Immunother C: II 67(6):981–988. https://doi.org/10.1007/s00262-017-2058-z

    Article  Google Scholar 

  45. Guo LY, Zhu P, Jin XP (2016) Association between the expression of HIF-1alpha and VEGF and prognostic implications in primary liver cancer. Genet Mol Res. https://doi.org/10.4238/gmr.15028107

    Article  PubMed  Google Scholar 

  46. Jantus-Lewintre E, Sanmartin E, Sirera R, Blasco A, Sanchez JJ, Taron M et al (2011) Combined VEGF-A and VEGFR-2 concentrations in plasma: diagnostic and prognostic implications in patients with advanced NSCLC. Lung Cancer 74(2):326–331. https://doi.org/10.1016/j.lungcan.2011.02.016

    Article  PubMed  Google Scholar 

  47. Wang J, Taylor A, Showeil R, Trivedi P, Horimoto Y, Bagwan I et al (2014) Expression profiling and significance of VEGF-A, VEGFR2, VEGFR3 and related proteins in endometrial carcinoma. Cytokine 68(2):94–100. https://doi.org/10.1016/j.cyto.2014.04.005

    Article  PubMed  CAS  Google Scholar 

  48. Wang X, Chen X, Fang J, Yang C (2013) Overexpression of both VEGF-A and VEGF-C in gastric cancer correlates with prognosis, and silencing of both is effective to inhibit cancer growth. Int J Clin Exp Pathol 6(4):586–597

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Yamamoto S, Konishi I, Mandai M, Kuroda H, Komatsu T, Nanbu K et al (1997) Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. Br J Cancer 76(9):1221–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xiao K, Ouyang Z, Tang HH (2018) Inhibiting the proliferation and metastasis of hilar cholangiocarcinoma cells by blocking the expression of vascular endothelial growth factor with small interfering RNA. Oncol Lett 16(2):1841–1848. https://doi.org/10.3892/ol.2018.8840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zeng FC, Zeng MQ, Huang L, Li YL, Gao BM, Chen JJ et al (2016) Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcinoma. Onco Targets Ther 9:2131–2141. https://doi.org/10.2147/ott.s98002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603. https://doi.org/10.1038/nrc2442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J et al (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Can Res 70(14):5728–5739. https://doi.org/10.1158/0008-5472.can-09-4672

    Article  CAS  Google Scholar 

  54. Cooke VG, LeBleu VS, Keskin D, Khan Z, O'Connell JT, Teng Y et al (2012) Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21(1):66–81. https://doi.org/10.1016/j.ccr.2011.11.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62. https://doi.org/10.1126/science.1104819

    Article  PubMed  CAS  Google Scholar 

  56. Meng MB, Zaorsky NG, Deng L, Wang HH, Chao J, Zhao LJ et al (2015) Pericytes: a double-edged sword in cancer therapy. Future Oncol 11(1):169–179. https://doi.org/10.2217/fon.14.123

    Article  PubMed  CAS  Google Scholar 

  57. Batchelor TT, Gerstner ER, Emblem KE, Duda DG, Kalpathy-Cramer J, Snuderl M et al (2013) Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci USA 110(47):19059–19064. https://doi.org/10.1073/pnas.1318022110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Heist RS, Duda DG, Sahani DV, Ancukiewicz M, Fidias P, Sequist LV et al (2015) Improved tumor vascularization after anti-VEGF therapy with carboplatin and nab-paclitaxel associates with survival in lung cancer. Proc Natl Acad Sci USA 112(5):1547–1552. https://doi.org/10.1073/pnas.1424024112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Tolaney SM, Boucher Y, Duda DG, Martin JD, Seano G, Ancukiewicz M et al (2015) Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci USA 112(46):14325–14330. https://doi.org/10.1073/pnas.1518808112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J et al (2012) Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA 109(43):17561–17566. https://doi.org/10.1073/pnas.1215397109

    Article  PubMed  PubMed Central  Google Scholar 

  61. Herbst RS, Arkenau HT, Santana-Davila R, Calvo E, Paz-Ares L, Cassier PA et al (2019) Ramucirumab plus pembrolizumab in patients with previously treated advanced non-small-cell lung cancer, gastro-oesophageal cancer, or urothelial carcinomas (JVDF): a multicohort, non-randomised, open-label, phase 1a/b trial. Lancet Oncol 20(8):1109–1123. https://doi.org/10.1016/s1470-2045(19)30458-9

    Article  PubMed  CAS  Google Scholar 

  62. Chung AS, Kowanetz M, Wu X, Zhuang G, Ngu H, Finkle D et al (2012) Differential drug class-specific metastatic effects following treatment with a panel of angiogenesis inhibitors. J Pathol 227(4):404–416. https://doi.org/10.1002/path.4052

    Article  PubMed  CAS  Google Scholar 

  63. Wu S, Zhou J, Guo J, Hua Z, Li J, Wang Z (2019) Apatinib inhibits tumor growth and angiogenesis in PNET models. Endocr Connect 8(1):8–19. https://doi.org/10.1530/ec-18-0397

    Article  PubMed  CAS  Google Scholar 

  64. Tian S, Quan H, Xie C, Guo H, Lu F, Xu Y et al (2011) YN968D1 is a novel and selective inhibitor of vascular endothelial growth factor receptor-2 tyrosine kinase with potent activity in vitro and in vivo. Cancer Sci 102(7):1374–1380. https://doi.org/10.1111/j.1349-7006.2011.01939.x

    Article  CAS  PubMed  Google Scholar 

  65. Peng QX, Han YW, Zhang YL, Hu J, Fan J, Fu SZ et al (2017) Apatinib inhibits VEGFR-2 and angiogenesis in an in vivo murine model of nasopharyngeal carcinoma. Oncotarget 8(32):52813–52822. https://doi.org/10.18632/oncotarget.17264

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhou K, Zhang JW, Wang QZ, Liu WY, Liu JL, Yao L et al (2019) Apatinib, a selective VEGFR2 inhibitor, improves the delivery of chemotherapeutic agents to tumors by normalizing tumor vessels in LoVo colon cancer xenograft mice. Acta Pharmacol Sin 40(4):556–562. https://doi.org/10.1038/s41401-018-0058-y

    Article  PubMed  CAS  Google Scholar 

  67. Liu ZJ, Zhou YJ, Ding RL, Xie F, Fu SZ, Wu JB et al (2018) In vitro and in vivo apatinib inhibits vasculogenic mimicry in melanoma MUM-2B cells. PLoS ONE 13(7):e0200845. https://doi.org/10.1371/journal.pone.0200845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Li B, Lalani AS, Harding TC, Luan B, Koprivnikar K, Huan TuG et al (2006) Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res Off J Am Assoc Cancer Res 12(22):6808–6816. https://doi.org/10.1158/1078-0432.ccr-06-1558

    Article  CAS  Google Scholar 

  69. Huang KW, Wu HL, Lin HL, Liang PC, Chen PJ, Chen SH et al (2010) Combining antiangiogenic therapy with immunotherapy exerts better therapeutical effects on large tumors in a woodchuck hepatoma model. Proc Natl Acad Sci USA 107(33):14769–14774. https://doi.org/10.1073/pnas.1009534107

    Article  PubMed  PubMed Central  Google Scholar 

  70. Reck M, Mok TSK, Nishio M, Jotte RM, Cappuzzo F, Orlandi F et al (2019) Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med 7(5):387–401. https://doi.org/10.1016/s2213-2600(19)30084-0

    Article  PubMed  CAS  Google Scholar 

  71. Xu J, Zhang Y, Jia R, Yue C, Chang L, Liu R et al (2019) Anti-PD-1 antibody SHR-1210 combined with apatinib for advanced hepatocellular carcinoma, gastric, or esophagogastric junction cancer: an open-label, dose escalation and expansion study. Clin Cancer Res Off J Am Assoc Cancer Res 25(2):515–523. https://doi.org/10.1158/1078-0432.ccr-18-2484

    Article  CAS  Google Scholar 

  72. Wan X, Luo X, Tan C, Zeng X, Zhang Y, Peng L (2019) First-line atezolizumab in addition to bevacizumab plus chemotherapy for metastatic, nonsquamous non-small cell lung cancer: a United States-based cost-effectiveness analysis. Cancer. https://doi.org/10.1002/cncr.32368

    Article  PubMed  PubMed Central  Google Scholar 

  73. Choueiri TK, Larkin J, Oya M, Thistlethwaite F, Martignoni M, Nathan P et al (2018) Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, phase 1b trial. Lancet Oncol 19(4):451–460. https://doi.org/10.1016/s1470-2045(18)30107-4

    Article  PubMed  CAS  Google Scholar 

  74. Chen J, Hu G, Chen Z, Wan X, Tan C, Zeng X et al (2019) Cost-effectiveness analysis of pembrolizumab plus axitinib versus sunitinib in first-line advanced renal cell carcinoma in China. Clin Drug Investig. https://doi.org/10.1007/s40261-019-00820-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully thank the Natural Science Foundation of China and School of Medicine, Shanghai Jiaotong University, for the funding.

Funding

This work is supported by grants from National Natural Science Foundation of China (81472843 to W. X.) and the study program of clinical capacity in urgently needed postgraduate majors in the School of Medicine, Shanghai Jiaotong University (JQ201703).

Author information

Authors and Affiliations

Authors

Contributions

XW and WD designed and supervised the study. QHW performed the experiments in vitro. QHW and JZG established the animal model and conducted the animal study. JZG was responsible for the TCGA and mRNA sequencing analysis. QHW and XW completed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xia Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

We state that animal experiment in our study was approved by the Institutional Animal Care and Use Committee of Shanghai Jiao Tong University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Gao, J., Di, W. et al. Anti-angiogenesis therapy overcomes the innate resistance to PD-1/PD-L1 blockade in VEGFA-overexpressed mouse tumor models. Cancer Immunol Immunother 69, 1781–1799 (2020). https://doi.org/10.1007/s00262-020-02576-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02576-x

Keywords

Navigation