Skip to main content
Log in

Genetic variation in IL28B is associated with the development of hepatitis B-related hepatocellular carcinoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

To evaluate the role of host IL28B (interleukin 28B; interferon lambda 3) single nucleotide polymorphisms (SNPs) in predicting hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) susceptibility, three SNPs in the IL28B gene (rs12979860C/T, rs8099917G/T and rs12980275G/A) were examined in 330 subjects (including 154 HBV-related HCC patients, 86 non-HCC patients with chronic hepatitis B (CHB), 43 HBV self-limited infections and 47 healthy controls). Notably, the frequency of CC homozygosity was 91.5% in healthy controls and 72.9% in CHB, the difference being statistically significant (χ 2 = 6.40, P = 0.01). The statistically difference was seen between healthy controls (91.5%) and HCC (74.7%) (χ 2 = 6.05, P = 0.01). However, this significant finding was not seen between HBV self-limited and healthy controls. Carriers of the minor T allele in rs12979860 had a higher risk of HCC compared with non-carriers (χ 2 = 4.44, P = 0.04). Haplotype analyses revealed significant association between haplotype C–T–A and healthy controls, but not with the HCC group (96.6 vs. 82.0%, χ 2 = 6.08, P = 0.01). Analyses of genotype combination and gene–gene interaction showed that there was a positive interaction between rs12979860 and rs12980275, with an OR rate of 11.79 (likelihood test, P = 0.04). Our results suggest that the IL28B rs12979860 C/T polymorphism might affect susceptibility to the chronic HBV infection and progression of HCC. Of note, the T allele and non-CC genotypes have strong predictive effect of increasing susceptibility of chronic HBV infection and HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132:2557–2576

    Article  PubMed  CAS  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  3. Schafer DF, Sorrell MF (1999) Hepatocellular carcinoma. Lancet 353:1253–1257

    Article  PubMed  CAS  Google Scholar 

  4. Yang HI, Lu SN, Liaw YF et al (2002) Hepatitis B e antigen and the risk of hepatocellular carcinoma. N Engl J Med 347:168–174

    Article  PubMed  CAS  Google Scholar 

  5. Yu MW, Yeh SH, Chen PJ et al (2005) Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men. J Natl Cancer Inst 97:265–272

    Article  PubMed  CAS  Google Scholar 

  6. Chen CJ, Yang HI, Su J et al (2006) Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 295:65–73

    Article  PubMed  CAS  Google Scholar 

  7. Iloeje U, Yang H, Su J, Jen C, You S, Chen C (2006) Predicting cirrhosis risk based on the level of circulating hepatitis B viral load. Gastroenterology 130:678–686

    Article  PubMed  Google Scholar 

  8. Thio CL, Thomas DL, Carrington M (2000) Chronic viral hepatitis and the human genome. Hepatology 31:819–827

    Article  PubMed  CAS  Google Scholar 

  9. Missiha SB, Ostrowski M, Heathcote EJ (2008) Disease progression in chronic hepatitis C: modifiable and nonmodifiable factors. Gastroenterology 134:1699–1714

    Article  PubMed  CAS  Google Scholar 

  10. Sheppard P, Kindsvogel W, Xu W et al (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immuno l4:63–68

    Article  Google Scholar 

  11. Kotenko SV, Gallagher G, Baurin VV et al (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4:69–77

    Article  PubMed  CAS  Google Scholar 

  12. Li M, Liu X, Zhou Y et al (2009) Interferon-lambdas: the modulators of antivirus, antitumor, and immune responses. J Leukoc Biol 86:23–32

    Article  PubMed  CAS  Google Scholar 

  13. Hong SH, Cho O, Kim K et al (2007) Effect of interferon-lambda on replication of hepatitis B virus in human hepatoma cells. Virus Res 126:245–249

    Article  PubMed  CAS  Google Scholar 

  14. Thomas DL, Thio CL, Martin MP et al (2009) Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461:798–801

    Article  PubMed  CAS  Google Scholar 

  15. Ge D, Fellay J, Thompson AJ et al (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461:399–401

    Article  PubMed  CAS  Google Scholar 

  16. Suppiah V, Moldovan M, Ahlenstiel G et al (2009) IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 41:1100–1104

    Article  PubMed  CAS  Google Scholar 

  17. Tanaka Y, Nishida N, Sugiyama M et al (2009) Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 41:1105–1109

    Article  PubMed  CAS  Google Scholar 

  18. Robek MD, Boyd BS, Chisari FV (2005) Lambda interferon inhibits hepatitis B and C virus replication. J Virol 79:3851–3854

    Article  PubMed  CAS  Google Scholar 

  19. Ank N, West H, Bartholdy C et al (2006) Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol 80:4501–4509

    Article  PubMed  CAS  Google Scholar 

  20. Melchjorsen J, Siren J, Julkunen I et al (2006) Induction of cytokine expression by herpes simplex virus in human monocyte-derived macrophages and dendritic cells is dependent on virus replication and is counteracted by ICP27 targeting NF-kappaB and IRF-3. J Gen Virol 87:1099–1108

    Article  PubMed  CAS  Google Scholar 

  21. Hou W, Wang X, Ye L et al (2009) Lambda interferon inhibits human immunodeficiency virus type 1 infection of macrophages. J Virol 83:3834–3842

    Article  PubMed  CAS  Google Scholar 

  22. Abushahba W, Balan M, Castaneda I, Yuan Y, Reuhl K, Raveche E et al (2010) Antitumor activity of type I and type III interferons in BNL hepatoma model. Cancer Immunol Immunother 59:1059–1071

    Article  PubMed  CAS  Google Scholar 

  23. Zitzmann K, Brand S, Baehs S, Goke B, Meinecke J, Spottl G et al (2006) Novel interferon-lambdas induce antiproliferative effects in neuroendocrine tumor cells. Biochem Biophys Res Commun 344:1334–1341

    Article  PubMed  CAS  Google Scholar 

  24. Sato A, Ohtsuki M, Hata M, Kobayashi E, Murakami T (2006) Antitumor activity of IFN-lambda in murine tumor models. J Immunol 176:7686–7694

    PubMed  CAS  Google Scholar 

  25. Chi B, Dickensheets HL, Spann KM, Alston MA, Luongo C, Dumoutier L, Huang J, Renauld JC, Kotenko SV, Roederer M, Beeler JA, Donnelly RP, Collins PL, Rabin RL (2006) Alpha and lambda interferon together mediate suppression of CD4 T cells induced by respiratory syncytial virus. J Virol 80:5032–5040

    Article  PubMed  CAS  Google Scholar 

  26. Zhang H (2010) Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers. Nat Genet 42:755–758

    Article  PubMed  CAS  Google Scholar 

  27. Anuradha B, Xin WW (2011) Power play: scoring our goals for liver cancer with better GWAS study design. J Hepatol 54:823–824

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to all the subjects who participated in this study. This work was supported by grants from the National Eleventh Five-year Science and Technology Major Projects, China (grant number 2008ZX10002-013), and the National Twelfth Five-year Science and Technology Major Projects, China (grant number 2012ZX10002-003).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyue Chen or Lai Wei.

Additional information

Shan Ren, Junfeng Lu and Xiaofei Du contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, S., Lu, J., Du, X. et al. Genetic variation in IL28B is associated with the development of hepatitis B-related hepatocellular carcinoma. Cancer Immunol Immunother 61, 1433–1439 (2012). https://doi.org/10.1007/s00262-012-1203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1203-y

Keywords

Navigation