Skip to main content

Advertisement

Log in

Monophosphoryl lipid A plus IFNγ maturation of dendritic cells induces antigen-specific CD8+ cytotoxic T cells with high cytolytic potential

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Dendritic cells (DCs) are promising antigen presenting cells for cancer treatment. Previously, we showed that the combination of monophosphoryl lipid A (MPLA) with IFNγ generates mature DCs that produce IL-12 and polarize CD4+ T cells towards a Th1 phenotype. Here, we extended these observations by showing that the DCs generated with the clinical grade maturation cocktail of MPLA/IFNγ induce superior tumour antigen-specific CD8+ CTL responses compared to the cytokine cocktail matured DCs that are currently used in the clinic. MPLA/IFNγ DCs can induce CTL responses in healthy individuals as well as in melanoma patients. The CTL induction was mainly dependent on the IL-12 produced by the MPLA/IFNγ DCs. The high amounts of induced CTLs are functional as they produce IFNγ and lyse target cells and this cytolytic activity is antigen specific and HLA restricted. Furthermore, the CTLs proved to kill tumour cells expressing endogenous tumour antigen in vitro. Therefore, MPLA/IFNγ DCs are very promising for the use in future cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lesterhuis WJ, Aarntzen EH, de Vries IJ, Schuurhuis DH, Figdor CG, Adema GJ, Punt CJ (2008) Dendritic cell vaccines in melanoma: from promise to proof? Crit Rev Oncol Hematol 66:118–134

    Article  CAS  PubMed  Google Scholar 

  2. Schuler G, Schuler-Thurner B, Steinman RM (2003) The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 15:138–147

    Article  CAS  PubMed  Google Scholar 

  3. Palucka AK, Ueno H, Fay J, Banchereau J (2008) Dendritic cells: a critical player in cancer therapy? J Immunother 31:793–805

    Article  PubMed  Google Scholar 

  4. Alder J, Hahn-Zoric M, Andersson BA, Karlsson-Parra A (2006) Interferon-gamma dose-dependently inhibits prostaglandin E(2)-mediated dendritic-cell-migration towards secondary lymphoid organ chemokines. Vaccine 24:7087–7094

    Article  CAS  PubMed  Google Scholar 

  5. Mailliard RB, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML, Kirkwood JM, Storkus WJ, Kalinski P (2004) alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 64:5934–5937

    Article  CAS  PubMed  Google Scholar 

  6. Vujanovic L, Ranieri E, Gambotto A, Olson WC, Kirkwood JM, Storkus WJ (2006) IL-12p70 and IL-18 gene-modified dendritic cells loaded with tumor antigen-derived peptides or recombinant protein effectively stimulate specific Type-1 CD4+ T-cell responses from normal donors and melanoma patients in vitro. Cancer Gene Ther 13:798–805

    Article  CAS  PubMed  Google Scholar 

  7. Bontkes HJ, Kramer D, Ruizendaal JJ, Kueter EW, Van Tendeloo VF, Meijer CJ, Hooijberg E (2007) Dendritic cells transfected with interleukin-12 and tumor-associated antigen messenger RNA induce high avidity cytotoxic T cells. Gene Ther 14:366–375

    Article  CAS  PubMed  Google Scholar 

  8. Calderhead DM, DeBenedette MA, Ketteringham H, Gamble AH, Horvatinovich JM, Tcherepanova IY, Nicolette CA, Healey DG (2008) Cytokine maturation followed by CD40L mRNA electroporation results in a clinically relevant dendritic cell product capable of inducing a potent proinflammatory CTL response. J Immunother 31:731–741

    Article  CAS  PubMed  Google Scholar 

  9. Bontkes HJ, Ruizendaal JJ, Kramer D, Meijer CJ, Schreurs MW, Hooijberg E (2005) Interleukin-12 increases proliferation and interferon-gamma production but not cytolytic activity of human antigen-specific effector memory cytotoxic T lymphocytes: power of the effect depends on the functional avidity of the T cell and the antigen concentration. Hum Immunol 66:1137–1145

    Article  CAS  PubMed  Google Scholar 

  10. Felzmann T, Huttner KG, Breuer SK, Wimmer D, Ressmann G, Wagner D, Paul P, Lehner M, Heitger A, Holter W (2005) Semi-mature IL-12 secreting dendritic cells present exogenous antigen to trigger cytolytic immune responses. Cancer Immunol Immunother 54:769–780

    Article  CAS  PubMed  Google Scholar 

  11. Gajewski TF, Renauld JC, Van Pel A, Boon T (1995) Costimulation with B7-1, IL-6, and IL-12 is sufficient for primary generation of murine antitumor cytolytic T lymphocytes in vitro. J Immunol 154:5637–5648

    CAS  PubMed  Google Scholar 

  12. Surman DR, Dudley ME, Overwijk WW, Restifo NP (2000) Cutting edge: CD4+ T cell control of CD8+ T cell reactivity to a model tumor antigen. J Immunol 164:562–565

    CAS  PubMed  Google Scholar 

  13. Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135–3142

    Article  CAS  PubMed  Google Scholar 

  14. Kalinski P, Vieira PL, Schuitemaker JH, de Jong EC, Kapsenberg ML (2001) Prostaglandin E(2) is a selective inducer of interleukin-12 p40 (IL-12p40) production and an inhibitor of bioactive IL-12p70 heterodimer. Blood 97:3466–3469

    Article  CAS  PubMed  Google Scholar 

  15. Kubo S, Takahashi HK, Takei M, Iwagaki H, Yoshino T, Tanaka N, Mori S, Nishibori M (2004) E-prostanoid (EP)2/EP4 receptor-dependent maturation of human monocyte-derived dendritic cells and induction of helper T2 polarization. J Pharmacol Exp Ther 309:1213–1220

    Article  CAS  PubMed  Google Scholar 

  16. Sakakibara M, Kanto T, Inoue M, Kaimori A, Yakushijin T, Miyatake H, Itose I, Miyazaki M, Kuzushita N, Hiramatsu N, Takehara T, Kasahara A, Hayashi N (2006) Quick generation of fully mature dendritic cells from monocytes with OK432, low-dose prostanoid, and interferon-alpha as potent immune enhancers. J Immunother 29:67–77

    Article  CAS  PubMed  Google Scholar 

  17. Boccaccio C, Jacod S, Kaiser A, Boyer A, Abastado JP, Nardin A (2002) Identification of a clinical-grade maturation factor for dendritic cells. J Immunother 25:88–96

    Article  PubMed  Google Scholar 

  18. Peng JC, Thomas R, Nielsen LK (2005) Generation and maturation of dendritic cells for clinical application under serum-free conditions. J Immunother 28:599–609

    Article  PubMed  Google Scholar 

  19. Boullart AC, Aarntzen EH, Verdijk P, Jacobs JF, Schuurhuis DH, Benitez-Ribas D, Schreibelt G, van de Rakt MW, Scharenborg NM, de Boer A, Kramer M, Figdor CG, Punt CJ, Adema GJ, de Vries IJ (2008) Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunol Immunother 57:1589–1597

    Article  CAS  PubMed  Google Scholar 

  20. Navabi H, Jasani B, Reece A, Clayton A, Tabi Z, Donninger C, Mason M, Adams M (2009) A clinical grade poly I:C-analogue (Ampligen) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and cancer patients in vitro. Vaccine 27:107–115

    Article  CAS  PubMed  Google Scholar 

  21. Casella CR, Mitchell TC (2008) Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci 65:3231–3240

    Article  CAS  PubMed  Google Scholar 

  22. Ten Brinke A, Karsten ML, Dieker MC, Zwaginga JJ, van Ham SM (2007) The clinical grade maturation cocktail monophosphoryl lipid A plus IFNgamma generates monocyte-derived dendritic cells with the capacity to migrate and induce Th1 polarization. Vaccine 25:7145–7152

    Article  CAS  PubMed  Google Scholar 

  23. Kostense S, Ogg GS, Manting EH, Gillespie G, Joling J, Vandenberghe K, Veenhof EZ, van Baarle D, Jurriaans S, Klein MR, Miedema F (2001) High viral burden in the presence of major HIV-specific CD8(+) T cell expansions: evidence for impaired CTL effector function. Eur J Immunol 31:677–686

    Article  CAS  PubMed  Google Scholar 

  24. Molenkamp BG, Sluijter BJ, van Leeuwen PA, Santegoets SJ, Meijer S, Wijnands PG, Haanen JB, van den Eertwegh AJ, Scheper RJ, de Gruijl TD (2008) Local administration of PF-3512676 CpG-B instigates tumor-specific CD8+ T-cell reactivity in melanoma patients. Clin Cancer Res 14:4532–4542

    Article  CAS  PubMed  Google Scholar 

  25. Verra NC, Jorritsma A, Weijer K, Ruizendaal JJ, Voordouw A, Weder P, Hooijberg E, Schumacher TN, Haanen JB, Spits H, Luiten RM (2004) Human telomerase reverse transcriptase-transduced human cytotoxic T cells suppress the growth of human melanoma in immunodeficient mice. Cancer Res 64:2153–2161

    Article  CAS  PubMed  Google Scholar 

  26. Brakenhoff JP, Hart M, De Groot ER, Di Padova F, Aarden LA (1990) Structure-function analysis of human IL-6. Epitope mapping of neutralizing monoclonal antibodies with amino- and carboxyl-terminal deletion mutants. J Immunol 145:561–568

    CAS  PubMed  Google Scholar 

  27. Muthuswamy R, Urban J, Lee JJ, Reinhart TA, Bartlett D, Kalinski P (2008) Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res 68:5972–5978

    Article  CAS  PubMed  Google Scholar 

  28. Romero P, Zippelius A, Kurth I, Pittet MJ, Touvrey C, Iancu EM, Corthesy P, Devevre E, Speiser DE, Rufer N (2007) Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J Immunol 178:4112–4119

    CAS  PubMed  Google Scholar 

  29. Latz E, Visintin A, Lien E, Fitzgerald KA, Espevik T, Golenbock DT (2003) The LPS receptor generates inflammatory signals from the cell surface. J Endotoxin Res 9:375–380

    CAS  PubMed  Google Scholar 

  30. DeBenedette MA, Calderhead DM, Ketteringham H, Gamble AH, Horvatinovich JM, Tcherepanova IY, Nicolette CA, Healey DG (2008) Priming of a novel subset of CD28+ rapidly expanding high-avidity effector memory CTL by post maturation electroporation-CD40L dendritic cells is IL-12 dependent. J Immunol 181:5296–5305

    CAS  PubMed  Google Scholar 

  31. Gagnon J, Ramanathan S, Leblanc C, Cloutier A, McDonald PP, Ilangumaran S (2008) IL-6, in synergy with IL-7 or IL-15, stimulates TCR-independent proliferation and functional differentiation of CD8+ T lymphocytes. J Immunol 180:7958–7968

    CAS  PubMed  Google Scholar 

  32. Tomiyama H, Matsuda T, Takiguchi M (2002) Differentiation of human CD8(+) T cells from a memory to memory/effector phenotype. J Immunol 168:5538–5550

    CAS  PubMed  Google Scholar 

  33. Powell DJ Jr, Dudley ME, Robbins PF, Rosenberg SA (2005) Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105:241–250

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt CS, Mescher MF (2002) Peptide antigen priming of naive, but not memory, CD8 T cells requires a third signal that can be provided by IL-12. J Immunol 168:5521–5529

    CAS  PubMed  Google Scholar 

  35. Bontkes HJ, Kramer D, Ruizendaal JJ, Meijer CJ, Hooijberg E (2008) Tumor associated antigen and interleukin-12 mRNA transfected dendritic cells enhance effector function of natural killer cells and antigen specific T-cells. Clin Immunol 127:375–384

    Article  CAS  PubMed  Google Scholar 

  36. Matsui M, Moriya O, Belladonna ML, Kamiya S, Lemonnier FA, Yoshimoto T, Akatsuka T (2004) Adjuvant activities of novel cytokines, interleukin-23 (IL-23) and IL-27, for induction of hepatitis C virus-specific cytotoxic T lymphocytes in HLA-A*0201 transgenic mice. J Virol 78:9093–9104

    Article  CAS  PubMed  Google Scholar 

  37. Hu J, Yuan X, Belladonna ML, Ong JM, Wachsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2006) Induction of potent antitumor immunity by intratumoral injection of interleukin 23-transduced dendritic cells. Cancer Res 66:8887–8896

    Article  CAS  PubMed  Google Scholar 

  38. Ha SJ, Kim DJ, Baek KH, Yun YD, Sung YC (2004) IL-23 induces stronger sustained CTL and Th1 immune responses than IL-12 in hepatitis C virus envelope protein 2 DNA immunization. J Immunol 172:525–531

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We want to thank Miranda Dieker for performing the realtime PCR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja ten Brinke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ten Brinke, A., van Schijndel, G., Visser, R. et al. Monophosphoryl lipid A plus IFNγ maturation of dendritic cells induces antigen-specific CD8+ cytotoxic T cells with high cytolytic potential. Cancer Immunol Immunother 59, 1185–1195 (2010). https://doi.org/10.1007/s00262-010-0843-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0843-z

Keywords

Navigation