Skip to main content

Advertisement

Log in

Identification of a broad coverage HLA-DR degenerate epitope pool derived from carcinoembryonic antigen

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

CD4 T cells are important for anti-tumor immune responses. Aside from their role in the activation of CD8 T cells, CD4 T cells also mediate anti-tumor immune responses by recruiting innate immune effectors into the tumor microenvironment. Thus, the search for strategies to boost CD4 T cell immunity is an active area of research. Our goal in this study was to identify HLA-DR epitopes of carcinoembryonic antigen (CEA), a commonly over-expressed tumor antigen. HLA-DR epitopes of CEA were identified using the epitope prediction program, PIC (predicted IC50) and tested using in vitro HLA-DR binding assays. Following CEA epitope confirmation, IFN-γ ELIspot assays were used to detect existing immunity against the HLA-DR epitope panel of CEA in breast and ovarian cancer patients. In vitro generated peptide-specific CD4 T cells were used to determine whether the epitopes are naturally processed from CEA protein. Forty-three epitopes of CEA were predicted, 15 of which had high binding affinity for 8 or more common HLA-DR molecules. A degenerate pool of four, HLA-DR restricted 15 amino acid epitopes (CEA.24, CEA.176/354, CEA.488, and CEA.653) consisting of two novel epitopes (CEA.24 and CEA.488) was identified against which 40% of breast and ovarian cancer patients had pre-existent T cell immunity. All four epitopes are naturally processed by antigen-presenting cells. Hardy–Weinberg analysis showed that the pool is useful in ~94% of patients. Patients with breast or ovarian cancer demonstrate pre-existent immune responses to the tumor antigen CEA. The degenerate pool of CEA peptides may be useful for augmenting CD4 T cell immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, Greenberg PD (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 99:16168–16173

    Article  PubMed  CAS  Google Scholar 

  2. Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54:721–728

    Article  PubMed  CAS  Google Scholar 

  3. Kobayashi H, Omiya R, Ruiz M, Huarte E, Sarobe P, Lasarte JJ, Herraiz M, Sangro B, Prieto J, Borras-Cuesta F, Celis E (2002) Identification of an antigenic epitope for helper T lymphocytes from carcinoembryonic antigen. Clin Cancer Res 8:3219–3225

    PubMed  CAS  Google Scholar 

  4. Campi G, Crosti M, Consogno G, Facchinetti V, Conti-Fine BM, Longhi R, Casorati G, Dellabona P, Protti MP (2003) CD4(+) T cells from healthy subjects and colon cancer patients recognize a carcinoembryonic antigen-specific immunodominant epitope. Cancer Res 63:8481–8486

    PubMed  CAS  Google Scholar 

  5. Kalli KR, Krco CJ, Hartmann LC, Goodman K, Maurer MJ, Yu C, Johnson EM, Erskine CL, Disis ML, Wettstein PJ, Fikes JD, Beebe M, Ishioka G, Knutson KL (2008) An HLA-DR-degenerate epitope pool detects insulin-like growth factor binding protein 2-specific immunity in patients with cancer. Cancer Res 68:4893–4901

    Article  PubMed  CAS  Google Scholar 

  6. Knutson KL, Krco CJ, Erskine CL, Goodman K, Kelemen LE, Wettstein PJ, Low PS, Hartmann LC, Kalli KR (2006) T-cell immunity to the folate receptor alpha is prevalent in women with breast or ovarian cancer. J Clin Oncol 24:4254–4261

    Article  PubMed  CAS  Google Scholar 

  7. Fujita H, Senju S, Yokomizo H, Saya H, Ogawa M, Matsushita S, Nishimura Y (1998) Evidence that HLA class II-restricted human CD4+ T cells specific to p53 self peptides respond to p53 proteins of both wild and mutant forms. Eur J Immunol 28:305–316

    Article  PubMed  CAS  Google Scholar 

  8. Kobayashi H, Wood M, Song Y, Appella E, Celis E (2000) Defining promiscuous MHC class II helper T-cell epitopes for the HER2/neu tumor antigen. Cancer Res 60:5228–5236

    PubMed  CAS  Google Scholar 

  9. Kobayashi H, Lu J, Celis E (2001) Identification of helper T-cell epitopes that encompass or lie proximal to cytotoxic T-cell epitopes in the gp100 melanoma tumor antigen. Cancer Res 61:7577–7584

    PubMed  CAS  Google Scholar 

  10. Jager E, Jager D, Karbach J, Chen YT, Ritter G, Nagata Y, Gnjatic S, Stockert E, Arand M, Old LJ, Knuth A (2000) Identification of NY-ESO-1 epitopes presented by human histocompatibility antigen (HLA)-DRB4*0101–0103 and recognized by CD4(+) T lymphocytes of patients with NY-ESO-1-expressing melanoma. J Exp Med 191:625–630

    Article  PubMed  CAS  Google Scholar 

  11. Zarour HM, Kirkwood JM, Kierstead LS, Herr W, Brusic V, Slingluff CL Jr, Sidney J, Sette A, Storkus WJ (2000) Melan-A/MART-1(51–73) represents an immunogenic HLA-DR4-restricted epitope recognized by melanoma-reactive CD4(+) T cells. Proc Natl Acad Sci USA 97:400–405

    Article  PubMed  CAS  Google Scholar 

  12. Topalian SL, Gonzales MI, Parkhurst M, Li YF, Southwood S, Sette A, Rosenberg SA, Robbins PF (1996) Melanoma-specific CD4+ T cells recognize nonmutated HLA-DR-restricted tyrosinase epitopes. J Exp Med 183:1965–1971

    Article  PubMed  CAS  Google Scholar 

  13. Kass ES, Greiner JW, Kantor JA, Tsang KY, Guadagni F, Chen Z, Clark B, De Pascalis R, Schlom J, Van Waes C (2002) Carcinoembryonic antigen as a target for specific antitumor immunotherapy of head and neck cancer. Cancer Res 62:5049–5057

    PubMed  CAS  Google Scholar 

  14. Hodge JW, Tsang KY, Poole DJ, Schlom J (2003) General keynote: vaccine strategies for the therapy of ovarian cancer. Gynecol Oncol 88:S97–S104, discussion S110–S113

    Article  PubMed  CAS  Google Scholar 

  15. Guadagni F, Roselli M, Cosimelli M, Spila A, Cavaliere F, Arcuri R, D’Alessandro R, Fracasso PL, Casale V, Vecchione A, Casciani CU, Greiner JW, Schlom J (1997) Quantitative analysis of CEA expression in colorectal adenocarcinoma and serum: lack of correlation. Int J Cancer 72:949–954

    Article  PubMed  CAS  Google Scholar 

  16. Ordonez C, Screaton RA, Ilantzis C, Stanners CP (2000) Human carcinoembryonic antigen functions as a general inhibitor of anoikis. Cancer Res 60:3419–3424

    PubMed  CAS  Google Scholar 

  17. Screaton RA, Penn LZ, Stanners CP (1997) Carcinoembryonic antigen, a human tumor marker, cooperates with Myc and Bcl-2 in cellular transformation. J Cell Biol 137:939–952

    Article  PubMed  CAS  Google Scholar 

  18. Kawashima I, Tsai V, Southwood S, Takesako K, Sette A, Celis E (1999) Identification of HLA-A3-restricted cytotoxic T lymphocyte epitopes from carcinoembryonic antigen and HER-2/neu by primary in vitro immunization with peptide-pulsed dendritic cells. Cancer Res 59:431–435

    PubMed  CAS  Google Scholar 

  19. Zaremba S, Barzaga E, Zhu M, Soares N, Tsang KY, Schlom J (1997) Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res 57:4570–4577

    PubMed  CAS  Google Scholar 

  20. Kawashima I, Hudson SJ, Tsai V, Southwood S, Takesako K, Appella E, Sette A, Celis E (1998) The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol 59:1–14

    Article  PubMed  CAS  Google Scholar 

  21. Marshall JL, Gulley JL, Arlen PM, Beetham PK, Tsang KY, Slack R, Hodge JW, Doren S, Grosenbach DW, Hwang J, Fox E, Odogwu L, Park S, Panicali D, Schlom J (2005) Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J Clin Oncol 23:720–731

    Article  PubMed  CAS  Google Scholar 

  22. Bos R, van Duikeren S, van Hall T, Kaaijk P, Taubert R, Kyewski B, Klein L, Melief CJ, Offringa R (2005) Expression of a natural tumor antigen by thymic epithelial cells impairs the tumor-protective CD4+ T-cell repertoire. Cancer Res 65:6443–6449

    Article  PubMed  CAS  Google Scholar 

  23. Sette A, Buus S, Appella E, Smith JA, Chesnut R, Miles C, Colon SM, Grey HM (1989) Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc Natl Acad Sci USA 86:3296–3300

    Article  PubMed  CAS  Google Scholar 

  24. Sette A, Buus S, Colon S, Miles C, Grey HM (1989) Structural analysis of peptides capable of binding to more than one Ia antigen. J Immunol 142:35–40

    PubMed  CAS  Google Scholar 

  25. Knutson KL, Schiffman K, Disis ML (2001) Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest 107:477–484

    Article  PubMed  CAS  Google Scholar 

  26. Southwood S, Sidney J, Kondo A, del Guercio MF, Appella E, Hoffman S, Kubo RT, Chesnut RW, Grey HM, Sette A (1998) Several common HLA-DR types share largely overlapping peptide binding repertoires. J Immunol 160:3363–3373

    PubMed  CAS  Google Scholar 

  27. Sidney J, Southwood S, Oseroff C, del Guercio MF, Sette A, Grey HM (2001) Measurement of MHC/peptide interactions by gel filtration. Curr Protoc Immunol 18:18.3

    Google Scholar 

  28. Marsh GE, Parham P, Barber LD (2000) The HLA facts book. Academic Press, San Diego

    Google Scholar 

  29. Wilson CC, Palmer B, Southwood S, Sidney J, Higashimoto Y, Appella E, Chesnut R, Sette A, Livingston BD (2001) Identification and antigenicity of broadly cross-reactive and conserved human immunodeficiency virus type 1-derived helper T-lymphocyte epitopes. J Virol 75:4195–4207

    Article  PubMed  CAS  Google Scholar 

  30. Hammarstrom S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9:67–81

    Article  PubMed  CAS  Google Scholar 

  31. Hogdall EV, Christensen L, Kjaer SK, Blaakaer J, Jarle Christensen I, Gayther S, Jacobs IJ, Hogdall CK (2008) Protein expression levels of carcinoembryonic antigen (CEA) in Danish ovarian cancer patients: from the Danish ‘MALOVA’ ovarian cancer study. Pathology 40:487–492

    Article  PubMed  CAS  Google Scholar 

  32. Kobayashi H, Celis E (2008) Peptide epitope identification for tumor-reactive CD4 T cells. Curr Opin Immunol 20:221–227

    Article  PubMed  CAS  Google Scholar 

  33. Disis ML, Knutson KL, Schiffman K, Rinn K, McNeel DG (2000) Pre-existent immunity to the HER-2/neu oncogenic protein in patients with HER-2/neu overexpressing breast and ovarian cancer. Breast Cancer Res Treat 62:245–252

    Article  PubMed  CAS  Google Scholar 

  34. Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, Knutson KL, Schiffman K (2002) Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 20:2624–2632

    Article  PubMed  CAS  Google Scholar 

  35. Knutson KL, Schiffman K, Cheever MA, Disis ML (2002) Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p369–377, results in short-lived peptide-specific immunity. Clin Cancer Res 8:1014–1018

    PubMed  CAS  Google Scholar 

  36. Morse MA, Deng Y, Coleman D, Hull S, Kitrell-Fisher E, Nair S, Schlom J, Ryback ME, Lyerly HK (1999) A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res 5:1331–1338

    PubMed  CAS  Google Scholar 

  37. Weihrauch MR, Ansen S, Jurkiewicz E, Geisen C, Xia Z, Anderson KS, Gracien E, Schmidt M, Wittig B, Diehl V, Wolf J, Bohlen H, Nadler LM (2005) Phase I/II combined chemoimmunotherapy with carcinoembryonic antigen-derived HLA-A2-restricted CAP-1 peptide and irinotecan, 5-fluorouracil, and leucovorin in patients with primary metastatic colorectal cancer. Clin Cancer Res 11:5993–6001

    Article  PubMed  CAS  Google Scholar 

  38. Saha A, Chatterjee SK, Foon KA, Celis E, Bhattacharya-Chatterjee M (2007) Therapy of established tumors in a novel murine model transgenic for human carcinoembryonic antigen and HLA-A2 with a combination of anti-idiotype vaccine and CTL peptides of carcinoembryonic antigen. Cancer Res 67:2881–2892

    Article  PubMed  CAS  Google Scholar 

  39. Shen L, Schroers R, Hammer J, Huang XF, Chen SY (2004) Identification of a MHC class-II restricted epitope in carcinoembryonic antigen. Cancer Immunol Immunother 53:391–403

    Article  PubMed  CAS  Google Scholar 

  40. Tassi E, Gavazzi F, Albarello L, Senyukov V, Longhi R, Dellabona P, Doglioni C, Braga M, Di Carlo V, Protti MP (2008) Carcinoembryonic antigen-specific but not antiviral CD4+ T cell immunity is impaired in pancreatic carcinoma patients. J Immunol 181:6595–6603

    PubMed  CAS  Google Scholar 

  41. Ruiz M, Kobayashi H, Lasarte JJ, Prieto J, Borras-Cuesta F, Celis E, Sarobe P (2004) Identification and characterization of a T-helper peptide from carcinoembryonic antigen. Clin Cancer Res 10:2860–2867

    Article  PubMed  CAS  Google Scholar 

  42. Haidopoulos D, Konstadoulakis MM, Antonakis PT, Alexiou DG, Manouras AM, Katsaragakis SM, Androulakis GF (2000) Circulating anti-CEA antibodies in the sera of patients with breast cancer. Eur J Surg Oncol 26:742–746

    Article  PubMed  CAS  Google Scholar 

  43. Knutson KL, Almand B, Dang Y, Disis ML (2004) Neu antigen-negative variants can be generated after neu-specific antibody therapy in neu transgenic mice. Cancer Res 64:1146–1151

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Mayo Clinic Comprehensive Cancer Center Immune Monitoring Core for performing the ELIspot assays, the Mayo Clinic Proteomics Research Center and Tissue and Cell Molecular Analysis Center (TACMA). The assistance of Corazon dela Rosa and Jennifer Childs is greatly appreciated. This work was supported by the Mayo Clinic Comprehensive Cancer Center, generous gifts from Martha and Bruce Atwater (KLK), K01-CA100764 (KLK), P50-CA116201 (JI), K12-CA090628 (KRK, LH), and R41-CA107590-01 (GI, KLK, JF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith L. Knutson.

Additional information

L. Karyampudi and C. J. Krco are co-first authors. G. Ishioka and K. L. Knutson are co-senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karyampudi, L., Krco, C.J., Kalli, K.R. et al. Identification of a broad coverage HLA-DR degenerate epitope pool derived from carcinoembryonic antigen. Cancer Immunol Immunother 59, 161–171 (2010). https://doi.org/10.1007/s00262-009-0738-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0738-z

Keywords

Navigation