Skip to main content
Log in

Diffusion-weighted magnetic resonance imaging for non-neoplastic conditions in the hepatobiliary and pancreatic regions: pearls and potential pitfalls in imaging interpretation

  • Pictorial Essay
  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Potentially, diffusion-weighted magnetic resonance imaging (DWI) can assess the functional information on concerning the status of tissue cellularity, because increased cellularity is associated with impeded diffusion. DWI in the hepatobiliary and pancreatic regions has demonstrated the usefulness to detect malignant lesions and differentiate them from benign lesions. However, it has been shown more recently that there is some overlap in ADC values for benign and malignant neoplasms. Moreover, some non-neoplastic lesions in the hepatobiliary and pancreatic regions exhibit restricted diffusion on DWI, because of pus, inflammation, or high cellularity. Focal eosinophilic liver disease, hepatic inflammatory myofibroblastic tumor, granulomatous liver disease, acute cholecystitis, xanthogranulomatous cholecystitis, focal pancreatitis, or autoimmune pancreatitis frequently exhibit restricted diffusion on DWI, which may be confused with malignancy in the hepatobiliary and pancreatic regions. Thus, DWI should not be interpreted in isolation, but in conjunction with other conventional images, to avoid the diagnostic pitfalls of DWI. Nevertheless, the presence of diffusion restriction in the non-neoplastic lesions sometimes provides additional information regarding the diagnosis, in problematic patients where conventional images have yielded equivocal findings. DWI may help differentiate hepatic abscess from malignant necrotic tumors, gallbladder empyema from dense bile or sludge in the gallbladder, and pylephlebitis from bland thrombosis in the portal vein. Therefore, knowledge of DWI findings to conventional imaging findings of diffusion-restricted non-neoplastic conditions in the hepatobiliary and pancreatic regions helps establishing a correct diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Qayyum A (2009) Diffusion-weighted imaging in the abdomen and pelvis: concepts and applications. Radiographics 29:1797–1810

    Article  PubMed  Google Scholar 

  2. Lee NK, Kim S, Kim GH, et al. (2012) Diffusion-weighted imaging of biliopancreatic disorders: correlation with conventional magnetic resonance imaging. World J Gastroenterol 18:4102–4117

    Article  PubMed Central  PubMed  Google Scholar 

  3. Mathieu D, Vasile N, Fagniez PL, et al. (1985) Dynamic CT features of hepatic abscesses. Radiology 154:749–752

    Article  CAS  PubMed  Google Scholar 

  4. Chan JH, Tsui EY, Luk SH, et al. (2001) Diffusion-weighted MR imaging of the liver: distinguishing hepatic abscess from cystic or necrotic tumor. Abdom Imaging 26:161–165

    Article  CAS  PubMed  Google Scholar 

  5. Park HJ, Kim SH, Jang KM, et al. (2013) Differentiating hepatic abscess from malignant mimickers: value of diffusion-weighted imaging with an emphasis on the periphery of the lesion. J Magn Reson Imaging 38:1333–1341

    Article  PubMed  Google Scholar 

  6. Miller FH, Hammond N, Siddiqi AJ, et al. (2010) Utility of diffusion-weighted MRI in distinguishing benign and malignant hepatic lesions. J Magn Reson Imaging 32:138–147

    Article  PubMed  Google Scholar 

  7. Park MS, Kim MJ, Lim JS, et al. (2009) Metastasis versus focal eosinophilic infiltration of the liver in patients with extrahepatic abdominal cancer: an evaluation with gadobenate dimeglumine-enhanced magnetic resonance imaging. J Comput Assist Tomogr 33:119–124

    Article  PubMed  Google Scholar 

  8. Kim YK, Kim CS, Moon WS, et al. (2005) MRI findings of focal eosinophilic liver diseases. AJR Am J Roentgenol 184:1541–1548

    Article  PubMed  Google Scholar 

  9. Kim YK, Lee YH, Kim CS, Lee MW (2011) Differentiating focal eosinophilic liver disease from hepatic metastases using unenhanced and gadoxetic acid-enhanced MRI. Abdom Imaging 36:425–432

    Article  PubMed  Google Scholar 

  10. Ahn SJ, Choi JY, Kim KA, et al. (2011) Focal eosinophilic infiltration of the liver: gadoxetic acid-enhanced magnetic resonance imaging and diffusion-weighted imaging. J Comput Assist Tomogr 35:81–85

    Article  PubMed  Google Scholar 

  11. Venkataraman S, Semelka RC, Braga L, Danet IM, Woosley JT (2003) Inflammatory myofibroblastic tumor of the hepatobiliary system: report of MR imaging appearance in four patients. Radiology 227:758–763

    Article  PubMed  Google Scholar 

  12. Mortele KJ, Segatto E, Ros PR (2004) The infected liver: radiologic–pathologic correlation. Radiographics 24:937–955

    Article  PubMed  Google Scholar 

  13. Yu RS, Zhang SZ, Wu JJ, Li RF (2004) Imaging diagnosis of 12 patients with hepatic tuberculosis. World J Gastroenterol 10:1639–1642

    PubMed  Google Scholar 

  14. Lim J, Yu JS, Hong SW, et al. (2011) A case of mass-forming splenic tuberculosis: MRI findings with emphasis of diffusion-weighted imaging characteristics. J Korean Med Sci 26:457–460

    Article  PubMed Central  PubMed  Google Scholar 

  15. Gupta RK, Prakash M, Mishra AM, et al. (2005) Role of diffusion weighted imaging in differentiation of intracranial tuberculoma and tuberculous abscess from cysticercus granulomas: a report of more than 100 lesions. Eur J Radiol 55:384–392

    Article  PubMed  Google Scholar 

  16. Tana C, D’Alessandro P, Tartaro A, et al. (2013) Sonographic assessment of a suspected biloma: a case report and review of the literature. World J Radiol 5:220–225

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lee NK, Kim S, Lee JW, et al. (2009) Biliary MR imaging with Gd-EOB-DTPA and its clinical applications. Radiographics 29:1707–1724

    Article  PubMed  Google Scholar 

  18. Islim F, Salik AE, Bayramoglu S, et al. (2014) Non-invasive detection of infection in acute pancreatic and acute necrotic collections with diffusion-weighted magnetic resonance imaging: preliminary findings. Abdom Imaging 39:472–481

    Article  PubMed  Google Scholar 

  19. Balthazar EJ, Gollapudi P (2000) Septic thrombophlebitis of the mesenteric and portal veins: CT imaging. J Comput Assist Tomogr 24:755–760

    Article  CAS  PubMed  Google Scholar 

  20. Catalano OA, Choy G, Zhu A, Hahn PF, Sahani DV (2010) Differentiation of malignant thrombus from bland thrombus of the portal vein in patients with hepatocellular carcinoma: application of diffusion-weighted MR imaging. Radiology 254:154–162

    Article  PubMed  Google Scholar 

  21. Sandrasegaran K, Tahir B, Nutakki K, et al. (2013) Usefulness of conventional MRI sequences and diffusion-weighted imaging in differentiating malignant from benign portal vein thrombus in cirrhotic patients. AJR Am J Roentgenol 201:1211–1219

    Article  PubMed  Google Scholar 

  22. Smith EA, Dillman JR, Elsayes KM, Menias CO, Bude RO (2009) Cross-sectional imaging of acute and chronic gallbladder inflammatory disease. AJR Am J Roentgenol 192:188–196

    Article  PubMed  Google Scholar 

  23. Ogawa T, Horaguchi J, Fujita N, et al. (2012) High b-value diffusion-weighted magnetic resonance imaging for gallbladder lesions: differentiation between benignity and malignancy. J Gastroenterol 47:1352–1360

    Article  PubMed  Google Scholar 

  24. Lee NK, Kim S, Kim TU, et al. (2014) Diffusion-weighted MRI for differentiation of benign from malignant lesions in the gallbladder. Clin Radiol 69:e78–e85

    Article  CAS  PubMed  Google Scholar 

  25. Guzman-Valdivia G (2004) Xanthogranulomatous cholecystitis: 15 years’ experience. World J Surg 28:254–257

    Article  PubMed  Google Scholar 

  26. Pandey M (2003) Risk factors for gallbladder cancer: a reappraisal. Eur J Cancer Prev 12:15–24

    Article  CAS  PubMed  Google Scholar 

  27. Catalano OA, Sahani DV, Kalva SP, et al. (2008) MR imaging of the gallbladder: a pictorial essay. Radiographics 28:135–155

    Article  PubMed  Google Scholar 

  28. Kang TW, Kim SH, Park HJ, et al. (2013) Differentiating xanthogranulomatous cholecystitis from wall-thickening type of gallbladder cancer: added value of diffusion-weighted MRI. Clin Radiol 68:992–1001

    Article  CAS  PubMed  Google Scholar 

  29. Benedict MD, Rafal R (2003) Finding of CT and MR evaluation of gallbladder hemobilia. Emerg Radiol 10:46–48

    PubMed  Google Scholar 

  30. Kim S, Lee NK, Lee JW, et al. (2007) CT evaluation of the bulging papilla with endoscopic correlation. Radiographics 27:1023–1038

    Article  PubMed  Google Scholar 

  31. Jang KM, Kim SH, Lee SJ, et al. (2013) Added value of diffusion-weighted MR imaging in the diagnosis of ampullary carcinoma. Radiology 266:491–501

    Article  PubMed  Google Scholar 

  32. Morgan DE, Baron TH (1998) Practical imaging in acute pancreatitis. Semin Gastrointest Dis 9:41–50

    CAS  PubMed  Google Scholar 

  33. Kim YK, Ko SW, Kim CS, Hwang SB (2006) Effectiveness of MR imaging for diagnosing the mild forms of acute pancreatitis: comparison with MDCT. J Magn Reson Imaging 24:1342–1349

    Article  PubMed  Google Scholar 

  34. Thomas S, Kayhan A, Lakadamyali H, Oto A (2012) Diffusion MRI of acute pancreatitis and comparison with normal individuals using ADC values. Emerg Radiol 19:5–9

    Article  PubMed  Google Scholar 

  35. Shinya S, Sasaki T, Nakagawa Y, et al. (2009) The efficacy of diffusion-weighted imaging for the detection and evaluation of acute pancreatitis. Hepatogastroenterology 56:1407–1410

    PubMed  Google Scholar 

  36. Shinya S, Sasaki T, Nakagawa Y, et al. (2008) Acute pancreatitis successfully diagnosed by diffusion-weighted imaging: a case report. World J Gastroenterol 14:5478–5480

    Article  PubMed Central  PubMed  Google Scholar 

  37. Bockman DE, Buchler M, Beger HG (1986) Ultrastructure of human acute pancreatitis. Int J Pancreatol 1:141–153

    CAS  PubMed  Google Scholar 

  38. Carmona-Sanchez R, Uscanga L, Bezaury-Rivas P, et al. (2000) Potential harmful effect of iodinated intravenous contrast medium on the clinical course of mild acute pancreatitis. Arch Surg 135:1280–1284

    Article  CAS  PubMed  Google Scholar 

  39. Johnson PT, Outwater EK (1999) Pancreatic carcinoma versus chronic pancreatitis: dynamic MR imaging. Radiology 212:213–218

    Article  CAS  PubMed  Google Scholar 

  40. Ichikawa T, Sou H, Araki T, et al. (2001) Duct-penetrating sign at MRCP: usefulness for differentiating inflammatory pancreatic mass from pancreatic carcinomas. Radiology 221:107–116

    Article  CAS  PubMed  Google Scholar 

  41. Huang WC, Sheng J, Chen SY, Lu JP (2011) Differentiation between pancreatic carcinoma and mass-forming chronic pancreatitis: usefulness of high b value diffusion-weighted imaging. J Dig Dis 12:401–408

    Article  PubMed  Google Scholar 

  42. Takeuchi M, Matsuzaki K, Kubo H, Nishitani H (2008) High-b-value diffusion-weighted magnetic resonance imaging of pancreatic cancer and mass-forming chronic pancreatitis: preliminary results. Acta Radiol 49:383–386

    Article  CAS  PubMed  Google Scholar 

  43. Wiggermann P, Grutzmann R, Weissenbock A, et al. (2012) Apparent diffusion coefficient measurements of the pancreas, pancreas carcinoma, and mass-forming focal pancreatitis. Acta Radiol 53:135–139

    Article  PubMed  Google Scholar 

  44. Fattahi R, Balci NC, Perman WH, et al. (2009) Pancreatic diffusion-weighted imaging (DWI): comparison between mass-forming focal pancreatitis (FP), pancreatic cancer (PC), and normal pancreas. J Magn Reson Imaging 29:350–356

    Article  PubMed  Google Scholar 

  45. Klauss M, Lemke A, Grunberg K, et al. (2011) Intravoxel incoherent motion MRI for the differentiation between mass forming chronic pancreatitis and pancreatic carcinoma. Invest Radiol 46:57–63

    Article  PubMed  Google Scholar 

  46. Ketwaroo GA, Sheth S (2013) Autoimmune Pancreatitis. Gastroenterol Rep 1:27–32

    Article  PubMed  Google Scholar 

  47. Nakamoto Y, Saga T, Ishimori T, et al. (2000) FDG-PET of autoimmune-related pancreatitis: preliminary results. Eur J Nucl Med 27:1835–1838

    Article  CAS  PubMed  Google Scholar 

  48. Kamisawa T, Takuma K, Anjiki H, et al. (2010) Differentiation of autoimmune pancreatitis from pancreatic cancer by diffusion-weighted MRI. Am J Gastroenterol 105:1870–1875

    Article  PubMed  Google Scholar 

  49. Taniguchi T, Kobayashi H, Nishikawa K, et al. (2009) Diffusion-weighted magnetic resonance imaging in autoimmune pancreatitis. Jpn J Radiol 27:138–142

    Article  PubMed  Google Scholar 

  50. Kim SH, Lee JM, Han JK, et al. (2008) Intrapancreatic accessory spleen: findings on MR Imaging, CT, US and scintigraphy, and the pathologic analysis. Korean J Radiol 9:162–174

    Article  PubMed Central  PubMed  Google Scholar 

  51. Lin WC, Lee RC, Chiang JH, et al. (2003) MR features of abdominal splenosis. AJR Am J Roentgenol 180:493–496

    Article  PubMed  Google Scholar 

  52. Jang KM, Kim SH, Lee SJ, et al. (2013) Differentiation of an intrapancreatic accessory spleen from a small (<3-cm) solid pancreatic tumor: value of diffusion-weighted MR imaging. Radiology 266:159–167

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, N.K., Kim, S., Kim, D.U. et al. Diffusion-weighted magnetic resonance imaging for non-neoplastic conditions in the hepatobiliary and pancreatic regions: pearls and potential pitfalls in imaging interpretation. Abdom Imaging 40, 643–662 (2015). https://doi.org/10.1007/s00261-014-0235-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-014-0235-5

Keywords

Navigation