Skip to main content

Advertisement

Log in

What value can TSPO PET bring for epilepsy treatment?

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Epilepsy is one of the most common neurological disorders and affects both the young and adult populations. The question we asked for this review was how positron emission tomography (PET) imaging with translocator protein (TSPO) radioligands can help inform the epilepsy clinic and the development of future treatments targeting neuroinflammatory processes.

Even though the first TSPO PET scans in epilepsy patients were performed over 20 years ago, this imaging modality has not seen wide adoption in the clinic. There is vast scientific evidence from preclinical studies in rodent models of temporal lobe epilepsy which have shown increased levels of TSPO corresponding to neuroinflammatory processes in the brain. These increases peaked sub-acutely (1–2 weeks) after the epileptogenic insult (e.g. status epilepticus) and remained chronically increased, albeit at lower levels. In addition, these studies have shown a correlation between TSPO levels and seizure outcome, pharmacoresistance and behavioural morbidities. Histological assessment points to a complex interplay between different cellular components such as microglial activation, astrogliosis and cell death changing dynamically over time.

In epilepsy patients, a highly sensitive biomarker of neuroinflammation would provide value for the optimization of surgical assessment (particularly for extratemporal lobe epilepsy) and support the clinical development path of anti-inflammatory treatments. Clinical studies have shown a systematic increase in asymmetry indices of TSPO PET binding. However, region-based analysis typically does not yield statistical differences and changes are often not restricted to the epileptogenic zone, limiting the ability of this imaging modality to localise pathology for surgery. In this manuscript, we discuss the biological underpinnings of these findings and review for which applications in epilepsy TSPO PET could bring added value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weaver DF, Pohlmann-Eden B. Pharmacoresistant epilepsy: unmet needs in solving the puzzle(s). Epilepsia. 2013;54(Suppl 2):80–5. https://doi.org/10.1111/epi.12191.

    Article  PubMed  CAS  Google Scholar 

  2. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512–21. https://doi.org/10.1111/epi.13709.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sierra A, Paolicelli RC, Kettenmann H. Cien Anos de Microglia: milestones in a century of microglial research. Trends Neurosci. 2019;42(11):778–92. https://doi.org/10.1016/j.tins.2019.09.004.

    Article  PubMed  CAS  Google Scholar 

  4. Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp Neurol. 2013;244:11–21. https://doi.org/10.1016/j.expneurol.2011.09.033.

    Article  PubMed  CAS  Google Scholar 

  5. Riazi K, Galic MA, Pittman QJ. Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Res. 2010;89(1):34–42. https://doi.org/10.1016/j.eplepsyres.2009.09.004.

    Article  PubMed  CAS  Google Scholar 

  6. Johnson EW, de Lanerolle NC, Kim JH, Sundaresan S, Spencer DD, Mattson RH, et al. “Central” and “peripheral” benzodiazepine receptors: opposite changes in human epileptogenic tissue. Neurology. 1992;42(4):811–5. https://doi.org/10.1212/wnl.42.4.811.

    Article  PubMed  CAS  Google Scholar 

  7. Kumlien E, Hilton-Brown P, Spannare B, Gillberg PG. In vitro quantitative autoradiography of [3H]-L-deprenyl and [3H]-PK 11195 binding sites in human epileptic hippocampus. Epilepsia. 1992;33(4):610–7. https://doi.org/10.1111/j.1528-1157.1992.tb02336.x.

    Article  PubMed  CAS  Google Scholar 

  8. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 2010;51(4):676–85. https://doi.org/10.1111/j.1528-1167.2010.02522.x.

    Article  PubMed  Google Scholar 

  9. Chen Z, Brodie MJ, Liew D, Kwan P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol. 2018;75(3):279–86. https://doi.org/10.1001/jamaneurol.2017.3949.

    Article  PubMed  Google Scholar 

  10. Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314–9. https://doi.org/10.1056/NEJM200002033420503.

    Article  PubMed  CAS  Google Scholar 

  11. Bartolomei F, Wendling F, Vignal JP, Kochen S, Bellanger JJ, Badier JM, et al. Seizures of temporal lobe epilepsy: identification of subtypes by coherence analysis using stereo-electro-encephalography. Clin Neurophysiol. 1999;110(10):1741–54. https://doi.org/10.1016/s1388-2457(99)00107-8.

    Article  PubMed  CAS  Google Scholar 

  12. Picot MC, Jaussent A, Neveu D, Kahane P, Crespel A, Gelisse P, et al. Cost-effectiveness analysis of epilepsy surgery in a controlled cohort of adult patients with intractable partial epilepsy: a 5-year follow-up study. Epilepsia. 2016;57(10):1669–79. https://doi.org/10.1111/epi.13492.

    Article  PubMed  Google Scholar 

  13. Sauvageau A, Desjardins P, Lozeva V, Rose C, Hazell AS, Bouthillier A, et al. Increased expression of “peripheral-type” benzodiazepine receptors in human temporal lobe epilepsy: implications for PET imaging of hippocampal sclerosis. Metab Brain Dis. 2002;17(1):3–11. https://doi.org/10.1023/a:1014044128845.

    Article  PubMed  CAS  Google Scholar 

  14. Crespel A, Coubes P, Rousset MC, Brana C, Rougier A, Rondouin G, et al. Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis. Brain Res. 2002;952(2):159–69. https://doi.org/10.1016/s0006-8993(02)03050-0.

    Article  PubMed  CAS  Google Scholar 

  15. Boer K, Jansen F, Nellist M, Redeker S, van den Ouweland AM, Spliet WG, et al. Inflammatory processes in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex. Epilepsy Res. 2008;78(1):7–21. https://doi.org/10.1016/j.eplepsyres.2007.10.002.

    Article  PubMed  CAS  Google Scholar 

  16. Iyer A, Zurolo E, Spliet WG, van Rijen PC, Baayen JC, Gorter JA, et al. Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias. Epilepsia. 2010;51(9):1763–73. https://doi.org/10.1111/j.1528-1167.2010.02547.x.

    Article  PubMed  CAS  Google Scholar 

  17. Banati RB, Goerres GW, Myers R, Gunn RN, Turkheimer FE, Kreutzberg GW, et al. [11C](R)-PK11195 positron emission tomography imaging of activated microglia in vivo in Rasmussen’s encephalitis. Neurology. 1999;53(9):2199–203. https://doi.org/10.1212/wnl.53.9.2199.

    Article  PubMed  CAS  Google Scholar 

  18. Hirvonen J, Kreisl WC, Fujita M, Dustin I, Khan O, Appel S, et al. Increased in vivo expression of an inflammatory marker in temporal lobe epilepsy. J Nucl Med. 2012;53(2):234–40. https://doi.org/10.2967/jnumed.111.091694.

    Article  PubMed  CAS  Google Scholar 

  19. Gershen LD, Zanotti-Fregonara P, Dustin IH, Liow JS, Hirvonen J, Kreisl WC, et al. Neuroinflammation in temporal lobe epilepsy measured using positron emission tomographic imaging of translocator protein. JAMA Neurol. 2015;72(8):882–8. https://doi.org/10.1001/jamaneurol.2015.0941.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Leal B, Chaves J, Carvalho C, Rangel R, Santos A, Bettencourt A, et al. Brain expression of inflammatory mediators in mesial temporal lobe epilepsy patients. J Neuroimmunol. 2017;313:82–8. https://doi.org/10.1016/j.jneuroim.2017.10.014.

    Article  PubMed  CAS  Google Scholar 

  21. Kandratavicius L, Peixoto-Santos JE, Monteiro MR, Scandiuzzi RC, Carlotti CG Jr, Assirati JA Jr, et al. Mesial temporal lobe epilepsy with psychiatric comorbidities: a place for differential neuroinflammatory interplay. J Neuroinflammation. 2015;12:38. https://doi.org/10.1186/s12974-015-0266-z.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Amhaoul H, Hamaide J, Bertoglio D, Reichel SN, Verhaeghe J, Geerts E, et al. Brain inflammation in a chronic epilepsy model: evolving pattern of the translocator protein during epileptogenesis. Neurobiol Dis. 2015;82:526–39. https://doi.org/10.1016/j.nbd.2015.09.004.

    Article  PubMed  CAS  Google Scholar 

  23. Russmann V, Brendel M, Mille E, Helm-Vicidomini A, Beck R, Gunther L, et al. Identification of brain regions predicting epileptogenesis by serial [(18)F]GE-180 positron emission tomography imaging of neuroinflammation in a rat model of temporal lobe epilepsy. Neuroimage Clin. 2017;15:35–44. https://doi.org/10.1016/j.nicl.2017.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yankam Njiwa J, Costes N, Bouillot C, Bouvard S, Fieux S, Becker G, et al. Quantitative longitudinal imaging of activated microglia as a marker of inflammation in the pilocarpine rat model of epilepsy using [(11)C]-( R)-PK11195 PET and MRI. J Cereb Blood Flow Metab. 2017;37(4):1251–63. https://doi.org/10.1177/0271678X16653615.

    Article  PubMed  CAS  Google Scholar 

  25. Nguyen DL, Wimberley C, Truillet C, Jego B, Caille F, Pottier G, et al. Longitudinal positron emission tomography imaging of glial cell activation in a mouse model of mesial temporal lobe epilepsy: toward identification of optimal treatment windows. Epilepsia. 2018;59(6):1234–44. https://doi.org/10.1111/epi.14083.

    Article  PubMed  CAS  Google Scholar 

  26. Dickstein LP, Liow JS, Austermuehle A, Zoghbi S, Inati SK, Zaghloul K, et al. Neuroinflammation in neocortical epilepsy measured by PET imaging of translocator protein. Epilepsia. 2019;60(6):1248–54. https://doi.org/10.1111/epi.15967.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kagitani-Shimono K, Kato H, Kuwayama R, Tominaga K, Nabatame S, Kishima H, et al. Clinical evaluation of neuroinflammation in child-onset focal epilepsy: a translocator protein PET study. J Neuroinflammation. 2021;18(1):8. https://doi.org/10.1186/s12974-020-02055-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gaillard WD, Bhatia S, Bookheimer SY, Fazilat S, Sato S, Theodore WH. FDG-PET and volumetric MRI in the evaluation of patients with partial epilepsy. Neurology. 1995;45(1):123–6. https://doi.org/10.1212/wnl.45.1.123.

    Article  PubMed  CAS  Google Scholar 

  29. Knowlton RC, Laxer KD, Ende G, Hawkins RA, Wong ST, Matson GB, et al. Presurgical multimodality neuroimaging in electroencephalographic lateralized temporal lobe epilepsy. Ann Neurol. 1997;42(6):829–37. https://doi.org/10.1002/ana.410420603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Drzezga A, Arnold S, Minoshima S, Noachtar S, Szecsi J, Winkler P, et al. 18F-FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med. 1999;40(5):737–46.

    PubMed  CAS  Google Scholar 

  31. Uijl SG, Leijten FS, Arends JB, Parra J, van Huffelen AC, Moons KG. The added value of [18F]-fluoro-D-deoxyglucose positron emission tomography in screening for temporal lobe epilepsy surgery. Epilepsia. 2007;48(11):2121–9. https://doi.org/10.1111/j.1528-1167.2007.01197.x.

    Article  PubMed  Google Scholar 

  32. Chassoux F, Artiges E, Semah F, Laurent A, Landre E, Turak B, et al. (18)F-FDG-PET patterns of surgical success and failure in mesial temporal lobe epilepsy. Neurology. 2017;88(11):1045–53. https://doi.org/10.1212/WNL.0000000000003714.

    Article  PubMed  CAS  Google Scholar 

  33. Dupont S, Semah F, Clemenceau S, Adam C, Baulac M, Samson Y. Accurate prediction of postoperative outcome in mesial temporal lobe epilepsy: a study using positron emission tomography with 18fluorodeoxyglucose. Arch Neurol. 2000;57(9):1331–6. https://doi.org/10.1001/archneur.57.9.1331.

    Article  PubMed  CAS  Google Scholar 

  34. Tomas J, Pittau F, Hammers A, Bouvard S, Picard F, Vargas MI, et al. The predictive value of hypometabolism in focal epilepsy: a prospective study in surgical candidates. Eur J Nucl Med Mol Imaging. 2019;46(9):1806–16. https://doi.org/10.1007/s00259-019-04356-x.

    Article  PubMed  CAS  Google Scholar 

  35. Vinton AB, Carne R, Hicks RJ, Desmond PM, Kilpatrick C, Kaye AH, et al. The extent of resection of FDG-PET hypometabolism relates to outcome of temporal lobectomy. Brain. 2007;130(Pt 2):548–60. https://doi.org/10.1093/brain/awl232.

    Article  PubMed  Google Scholar 

  36. Menon RN, Radhakrishnan A, Parameswaran R, Thomas B, Kesavadas C, Abraham M, et al. Does F-18 FDG-PET substantially alter the surgical decision-making in drug-resistant partial epilepsy? Epilepsy Behav. 2015;51:133–9. https://doi.org/10.1016/j.yebeh.2015.07.004.

    Article  PubMed  Google Scholar 

  37. Noe K, Sulc V, Wong-Kisiel L, Wirrell E, Van Gompel JJ, Wetjen N, et al. Long-term outcomes after nonlesional extratemporal lobe epilepsy surgery. JAMA Neurol. 2013;70(8):1003–8. https://doi.org/10.1001/jamaneurol.2013.209.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Englot DJ, Breshears JD, Sun PP, Chang EF, Auguste KI. Seizure outcomes after resective surgery for extra-temporal lobe epilepsy in pediatric patients. J Neurosurg Pediatr. 2013;12(2):126–33. https://doi.org/10.3171/2013.5.PEDS1336.

    Article  PubMed  Google Scholar 

  39. Tellez-Zenteno JF, Hernandez Ronquillo L, Moien-Afshari F, Wiebe S. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res. 2010;89(2–3):310–8. https://doi.org/10.1016/j.eplepsyres.2010.02.007.

    Article  PubMed  Google Scholar 

  40. Kim YK, Lee DS, Lee SK, Chung CK, Chung JK, Lee MC. (18)F-FDG PET in localization of frontal lobe epilepsy: comparison of visual and SPM analysis. J Nucl Med. 2002;43(9):1167–74.

    PubMed  Google Scholar 

  41. Casse R, Rowe CC, Newton M, Berlangieri SU, Scott AM. Positron emission tomography and epilepsy. Mol Imaging Biol. 2002;4(5):338–51. https://doi.org/10.1016/s1536-1632(02)00071-9.

    Article  PubMed  Google Scholar 

  42. Rathore C, Dickson JC, Teotonio R, Ell P, Duncan JS. The utility of 18F-fluorodeoxyglucose PET (FDG PET) in epilepsy surgery. Epilepsy Res. 2014;108(8):1306–14. https://doi.org/10.1016/j.eplepsyres.2014.06.012.

    Article  PubMed  Google Scholar 

  43. Butler T, Ichise M, Teich AF, Gerard E, Osborne J, French J, et al. Imaging inflammation in a patient with epilepsy due to focal cortical dysplasia. J Neuroimaging. 2013;23(1):129–31. https://doi.org/10.1111/j.1552-6569.2010.00572.x.

    Article  PubMed  Google Scholar 

  44. Jehi L, Friedman D, Carlson C, Cascino G, Dewar S, Elger C, et al. The evolution of epilepsy surgery between 1991 and 2011 in nine major epilepsy centers across the United States, Germany, and Australia. Epilepsia. 2015;56(10):1526–33. https://doi.org/10.1111/epi.13116.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bertoglio D, Verhaeghe J, Santermans E, Amhaoul H, Jonckers E, Wyffels L, et al. Non-invasive PET imaging of brain inflammation at disease onset predicts spontaneous recurrent seizures and reflects comorbidities. Brain Behav Immun. 2017;61:69–79. https://doi.org/10.1016/j.bbi.2016.12.015.

    Article  PubMed  Google Scholar 

  46. Mazarati A, Maroso M, Iori V, Vezzani A, Carli M. High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and Receptor for advanced glycation end products. Exp Neurol. 2011;232(2):143–8. https://doi.org/10.1016/j.expneurol.2011.08.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Harhausen D, Sudmann V, Khojasteh U, Muller J, Zille M, Graham K, et al. Specific imaging of inflammation with the 18 kDa translocator protein ligand DPA-714 in animal models of epilepsy and stroke. PLoS One. 2013;8(8): e69529. https://doi.org/10.1371/journal.pone.0069529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Dedeurwaerdere S, Callaghan PD, Pham T, Rahardjo GL, Amhaoul H, Berghofer P, et al. PET imaging of brain inflammation during early epileptogenesis in a rat model of temporal lobe epilepsy. EJNMMI Res. 2012;2(1):60. https://doi.org/10.1186/2191-219X-2-60.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Brackhan M, Bascunana P, Postema JM, Ross TL, Bengel FM, Bankstahl M, et al. Serial quantitative TSPO-targeted PET reveals peak microglial activation up to 2 weeks after an epileptogenic brain insult. J Nucl Med. 2016;57(8):1302–8. https://doi.org/10.2967/jnumed.116.172494.

    Article  PubMed  CAS  Google Scholar 

  50. Bogdanovic RM, Syvanen S, Michler C, Russmann V, Eriksson J, Windhorst AD, et al. (R)-[11C]PK11195 brain uptake as a biomarker of inflammation and antiepileptic drug resistance: evaluation in a rat epilepsy model. Neuropharmacology. 2014;85:104–12. https://doi.org/10.1016/j.neuropharm.2014.05.002.

    Article  PubMed  CAS  Google Scholar 

  51. Butler T, Li Y, Tsui W, Friedman D, Maoz A, Wang X, et al. Transient and chronic seizure-induced inflammation in human focal epilepsy. Epilepsia. 2016;57(9):e191-4. https://doi.org/10.1111/epi.13457.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vezzani A, Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology. 2015;96(Pt A):70–82. https://doi.org/10.1016/j.neuropharm.2014.10.027.

    Article  PubMed  CAS  Google Scholar 

  53. Ali I, Chugh D, Ekdahl CT. Role of fractalkine-CX3CR1 pathway in seizure-induced microglial activation, neurodegeneration, and neuroblast production in the adult rat brain. Neurobiol Dis. 2015;74:194–203. https://doi.org/10.1016/j.nbd.2014.11.009.

    Article  PubMed  CAS  Google Scholar 

  54. Chugh D, Ali I, Bakochi A, Bahonjic E, Etholm L, Ekdahl CT. Alterations in brain inflammation, synaptic proteins, and adult hippocampal neurogenesis during epileptogenesis in mice lacking synapsin2. PLoS One. 2015;10(7): e0132366. https://doi.org/10.1371/journal.pone.0132366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bertoglio D, Amhaoul H, Goossens J, Ali I, Jonckers E, Bijnens T, Siano M, Wyffels L, Verhaeghe J, Van der Linden A, Staelens S, Dedeurwaerdere S. TSPO PET upregulation predicts epileptic phenotype at disease onset independently from chronic TSPO expression in a rat model of temporal lobe epilepsy. Neuroimage Clin. 2021;31:102701.

  56. Immonen R, Smith G, Brady RD, Wright D, Johnston L, Harris NG, et al. Harmonization of pipeline for preclinical multicenter MRI biomarker discovery in a rat model of post-traumatic epileptogenesis. Epilepsy Res. 2019;150:46–57. https://doi.org/10.1016/j.eplepsyres.2019.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Folkersma H, Foster Dingley JC, van Berckel BN, Rozemuller A, Boellaard R, Huisman MC, et al. Increased cerebral (R)-[(11)C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study. J Neuroinflammation. 2011;8:67. https://doi.org/10.1186/1742-2094-8-67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Yu I, Inaji M, Maeda J, Okauchi T, Nariai T, Ohno K, et al. Glial cell-mediated deterioration and repair of the nervous system after traumatic brain injury in a rat model as assessed by positron emission tomography. J Neurotrauma. 2010;27(8):1463–75. https://doi.org/10.1089/neu.2009.1196.

    Article  PubMed  Google Scholar 

  59. Missault S, Anckaerts C, Blockx I, Deleye S, Van Dam D, Barriche N, et al. Neuroimaging of subacute brain inflammation and microstructural changes predicts long-term functional outcome after experimental traumatic brain injury. J Neurotrauma. 2019;36(5):768–88. https://doi.org/10.1089/neu.2018.5704.

    Article  PubMed  Google Scholar 

  60. Casillas-Espinosa PM, Andrade P, Santana-Gomez C, Paananen T, Smith G, Ali I, et al. Harmonization of the pipeline for seizure detection to phenotype post-traumatic epilepsy in a preclinical multicenter study on post-traumatic epileptogenesis. Epilepsy Res. 2019;156: 106131. https://doi.org/10.1016/j.eplepsyres.2019.04.011.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Curia G, Eastman CL, Miller JW, D'Ambrosio R. Modeling post-traumatic epilepsy for therapy development. In: Laskowitz D, Grant G, editors. Translational research in traumatic brain injury. Chapter 10; Frontiers in Neuroscience. Boca Raton (FL); 2016.

  62. Choi J, Koh S. Role of brain inflammation in epileptogenesis. Yonsei Med J. 2008;49(1):1–18. https://doi.org/10.3349/ymj.2008.49.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Moller T, Bard F, Bhattacharya A, Biber K, Campbell B, Dale E, et al. Critical data-based re-evaluation of minocycline as a putative specific microglia inhibitor. Glia. 2016;64(10):1788–94. https://doi.org/10.1002/glia.23007.

    Article  PubMed  Google Scholar 

  64. Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Thirteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIII). Epilepsia. 2017;58(2):181–221. https://doi.org/10.1111/epi.13634.

    Article  PubMed  Google Scholar 

  65. Wang DD, Englot DJ, Garcia PA, Lawton MT, Young WL. Minocycline- and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy Behav. 2012;24(3):314–8. https://doi.org/10.1016/j.yebeh.2012.03.035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Nowak M, Strzelczyk A, Reif PS, Schorlemmer K, Bauer S, Norwood BA, et al. Minocycline as potent anticonvulsant in a patient with astrocytoma and drug resistant epilepsy. Seizure. 2012;21(3):227–8. https://doi.org/10.1016/j.seizure.2011.12.009.

    Article  PubMed  CAS  Google Scholar 

  67. Wang N, Mi X, Gao B, Gu J, Wang W, Zhang Y, et al. Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience. 2015;287:144–56. https://doi.org/10.1016/j.neuroscience.2014.12.021.

    Article  PubMed  CAS  Google Scholar 

  68. Wolf BJ, Brackhan M, Bascunana P, Leiter I, Langer BLN, Ross TL, et al. TSPO pet identifies different anti-inflammatory minocycline treatment response in two rodent models of epileptogenesis. Neurotherapeutics. 2020. https://doi.org/10.1007/s13311-020-00834-5.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Russmann V, Goc J, Boes K, Ongerth T, Salvamoser JD, Siegl C, et al. Minocycline fails to exert antiepileptogenic effects in a rat status epilepticus model. Eur J Pharmacol. 2016;771:29–39. https://doi.org/10.1016/j.ejphar.2015.12.002.

    Article  PubMed  CAS  Google Scholar 

  70. Bertoglio D, Amhaoul H, Van Eetveldt A, Houbrechts R, Van De Vijver S, Ali I, et al. Kainic acid-induced post-status epilepticus models of temporal lobe epilepsy with diverging seizure phenotype and neuropathology. Front Neurol. 2017;8:588. https://doi.org/10.3389/fneur.2017.00588.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Morin-Brureau M, Milior G, Royer J, Chali F, Le Duigou C, Savary E, et al. Microglial phenotypes in the human epileptic temporal lobe. Brain. 2018;141(12):3343–60. https://doi.org/10.1093/brain/awy276.

    Article  PubMed  Google Scholar 

  72. Dachet F, Bagla S, Keren-Aviram G, Morton A, Balan K, Saadat L, et al. Predicting novel histopathological microlesions in human epileptic brain through transcriptional clustering. Brain. 2015;138(Pt 2):356–70. https://doi.org/10.1093/brain/awu350.

    Article  PubMed  Google Scholar 

  73. Betlazar C, Harrison-Brown M, Middleton RJ, Banati R, Liu GJ. Cellular sources and regional variations in the expression of the neuroinflammatory marker translocator protein (TSPO) in the normal brain. Int J Mol Sci. 2018;19(9). https://doi.org/10.3390/ijms19092707.

  74. Zhao X, Liao Y, Morgan S, Mathur R, Feustel P, Mazurkiewicz J, et al. Noninflammatory changes of microglia are sufficient to cause epilepsy. Cell Rep. 2018;22(8):2080–93. https://doi.org/10.1016/j.celrep.2018.02.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Walker DG, Lue LF. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res Ther. 2015;7(1):56. https://doi.org/10.1186/s13195-015-0139-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2016;53(2):1181–94. https://doi.org/10.1007/s12035-014-9070-5.

    Article  PubMed  CAS  Google Scholar 

  77. Ali I, Aertgeerts S, Le Blon D, Bertoglio D, Hoornaert C, Ponsaerts P, et al. Intracerebral delivery of the M2 polarizing cytokine interleukin 13 using mesenchymal stem cell implants in a model of temporal lobe epilepsy in mice. Epilepsia. 2017;58(6):1063–72. https://doi.org/10.1111/epi.13743.

    Article  PubMed  CAS  Google Scholar 

  78. Wang H, Liu S, Tang Z, Liu J. Some cross-talks between immune cells and epilepsy should not be forgotten. Neurol Sci. 2014;35(12):1843–9. https://doi.org/10.1007/s10072-014-1955-6.

    Article  PubMed  CAS  Google Scholar 

  79. Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S, et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol. 2009;35(3):306–28. https://doi.org/10.1111/j.1365-2990.2008.01006.x.

    Article  PubMed  CAS  Google Scholar 

  80. Scott G, Mahmud M, Owen DR, Johnson MR. Microglial positron emission tomography (PET) imaging in epilepsy: applications, opportunities and pitfalls. Seizure. 2017;44:42–7. https://doi.org/10.1016/j.seizure.2016.10.023.

    Article  PubMed  Google Scholar 

  81. Turkheimer FE, Rizzo G, Bloomfield PS, Howes O, Zanotti-Fregonara P, Bertoldo A, et al. The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans. 2015;43(4):586–92. https://doi.org/10.1042/BST20150058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Gorter JA, Aronica E, van Vliet EA. The roof is leaking and a storm is raging: repairing the blood-brain barrier in the fight against epilepsy. Epilepsy Curr. 2019;19(3):177–81. https://doi.org/10.1177/1535759719844750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Friedman A. Blood-brain barrier dysfunction, status epilepticus, seizures, and epilepsy: a puzzle of a chicken and egg? Epilepsia. 2011;52(Suppl 8):19–20. https://doi.org/10.1111/j.1528-1167.2011.03227.x.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sinharay S, Tu TW, Kovacs ZI, Schreiber-Stainthorp W, Sundby M, Zhang X, et al. In vivo imaging of sterile microglial activation in rat brain after disrupting the blood-brain barrier with pulsed focused ultrasound: [18F]DPA-714 PET study. J Neuroinflammation. 2019;16(1):155. https://doi.org/10.1186/s12974-019-1543-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hannestad J, Gallezot JD, Schafbauer T, Lim K, Kloczynski T, Morris ED, et al. Endotoxin-induced systemic inflammation activates microglia: [(11)C]PBR28 positron emission tomography in nonhuman primates. Neuroimage. 2012;63(1):232–9. https://doi.org/10.1016/j.neuroimage.2012.06.055.

    Article  PubMed  CAS  Google Scholar 

  86. Lyoo CH, Ikawa M, Liow JS, Zoghbi SS, Morse CL, Pike VW, et al. Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect neuroinflammation measured with PET radioligand binding to translocator protein. J Nucl Med. 2015;56(5):701–6. https://doi.org/10.2967/jnumed.114.146027.

    Article  PubMed  CAS  Google Scholar 

  87. Schubert J, Tonietto M, Turkheimer F, Zanotti-Fregonara P, Veronese M. Supervised clustering for TSPO PET imaging. Eur J Nucl Med Mol Imaging. 2021. https://doi.org/10.1007/s00259-021-05309-z.

    Article  PubMed  Google Scholar 

  88. Wimberley C, Lavisse S, Hillmer A, Hinz R, Turkheimer F, Zanotti-Fregonara P. Kinetic modeling and parameter estimation of TSPO PET imaging in the human brain. Eur J Nucl Med Mol Imaging. 2021. https://doi.org/10.1007/s00259-021-05248-9.

    Article  PubMed  Google Scholar 

  89. Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 2008;35(12):2304–19. https://doi.org/10.1007/s00259-008-0908-9.

    Article  PubMed  Google Scholar 

  90. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32(1):1–5. https://doi.org/10.1038/jcbfm.2011.147.

    Article  PubMed  CAS  Google Scholar 

  91. Woodcock EA, Schain M, Cosgrove KP, Hillmer AT. Quantification of [(11)C]PBR28 data after systemic lipopolysaccharide challenge. EJNMMI Res. 2020;10(1):19. https://doi.org/10.1186/s13550-020-0605-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Rizzo G, Veronese M, Tonietto M, Bodini B, Stankoff B, Wimberley C, et al. Generalization of endothelial modelling of TSPO PET imaging: considerations on tracer affinities. J Cereb Blood Flow Metab. 2019;39(5):874–85. https://doi.org/10.1177/0271678X17742004.

    Article  PubMed  CAS  Google Scholar 

  93. Owen DR, Matthews PM. Imaging brain microglial activation using positron emission tomography and translocator protein-specific radioligands. Int Rev Neurobiol. 2011;101:19–39. https://doi.org/10.1016/B978-0-12-387718-5.00002-X.

    Article  PubMed  CAS  Google Scholar 

  94. Peyronneau MA, Saba W, Goutal S, Damont A, Dolle F, Kassiou M, et al. Metabolism and quantification of [(18)F]DPA-714, a new TSPO positron emission tomography radioligand. Drug Metab Dispos. 2013;41(1):122–31. https://doi.org/10.1124/dmd.112.046342.

    Article  PubMed  CAS  Google Scholar 

  95. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27(9):1533–9. https://doi.org/10.1038/sj.jcbfm.9600493.

    Article  PubMed  CAS  Google Scholar 

  96. Janssen B, Vugts DJ, Windhorst AD, Mach RH. PET Imaging of microglial activation-beyond targeting TSPO. Molecules. 2018;23(3). https://doi.org/10.3390/molecules23030607.

  97. Amhaoul H, Ali I, Mola M, Van Eetveldt A, Szewczyk K, Missault S, et al. P2X7 receptor antagonism reduces the severity of spontaneous seizures in a chronic model of temporal lobe epilepsy. Neuropharmacology. 2016;105:175–85. https://doi.org/10.1016/j.neuropharm.2016.01.018.

    Article  PubMed  CAS  Google Scholar 

  98. Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET radiotracers and targets for imaging of neuroinflammation in neurodegenerative diseases: outlook beyond TSPO. Mol Imaging. 2018;17:1536012118792317. https://doi.org/10.1177/1536012118792317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Herve Boutin and Catriona Wimberley for proofreading the manuscript. VB thanks the « fondation Française pour la Recherche sur l’Epilepsie » (FFRE) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviane Bouilleret.

Ethics declarations

Research involving human participants and/or animals

This article does not contain any studies with animals or human participants performed by any of the authors.

Informed consent

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouilleret, V., Dedeurwaerdere, S. What value can TSPO PET bring for epilepsy treatment?. Eur J Nucl Med Mol Imaging 49, 221–233 (2021). https://doi.org/10.1007/s00259-021-05449-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05449-2

Keywords

Navigation