Skip to main content
Log in

Therapy assessment in multiple myeloma with PET

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Multiple myeloma is a plasma cell dyscrasia producing bone lytic lesions. In recent years, a wide spectrum of therapeutic approaches are available to treat the disease: an accurate therapy assessment has, therefore, become of utmost importance. In this field, imaging is becoming a cornerstone, especially in association with clinical parameters. Among imaging procedures, FDG PET/CT is recognized to provide reliable information, achieved in a very safe and fast procedure.  The literature has produced very concordant results from different groups assessing the value of FDG PET/CT as a prognostic factor in general and in therapy assessment, but some issues remain regarding a standardization of image interpretation especially in borderline cases. So far, no data regarding nor other imaging compounds and the use of hybrid tomographs PET/MR are available to define therapy assessment in PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kyle RA. Diagnostic criteria of multiple myeloma. Hematol Oncol Clin North Am. 1992;6:347–58.

    CAS  PubMed  Google Scholar 

  2. Rajkumar SV, et al. International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–48.

    Article  PubMed  Google Scholar 

  3. Durie BGM. The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer. 2006;42:1539–43.

    Article  PubMed  Google Scholar 

  4. Mahnken AH, et al. Multidetector CT of the spine in multiple myeloma: comparison with MR imaging and radiography. AJR Am J Roentgenol. 2002;178:1429–36.

    Article  CAS  PubMed  Google Scholar 

  5. Avva R, Vanhemert RL, Barlogie B, Munshi N, Angtuaco EJ. CT-guided biopsy of focal lesions in patients with multiple myeloma may reveal new and more aggressive cytogenetic abnormalities. AJNR Am J Neuroradiol. 2001;22:781–5.

    CAS  PubMed  Google Scholar 

  6. Tirovola EB, et al. The use of 99mTc-MIBI scanning in multiple myeloma. Br J Cancer. 1996;74:1815–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pace L, et al. Different patterns of technetium-99m sestamibi uptake in multiple myeloma. Eur J Nucl Med. 1998;25:714–20.

    Article  CAS  PubMed  Google Scholar 

  8. Fonti R, et al. Bone marrow uptake of 99mTc-MIBI in patients with multiple myeloma. Eur J Nucl Med. 2001;28:214–20.

    Article  CAS  PubMed  Google Scholar 

  9. Falcone C, Cipullo S, Sannino P, Restuccia A. Whole body magnetic resonance and CT/PET in patients affected by multiple myeloma during staging before treatment. Recenti Prog Med. 2012;103:444–9.

    PubMed  Google Scholar 

  10. Bauerle T, et al. Multiple myeloma and monoclonal gammopathy of undetermined significance: importance of whole-body versus spinal MR imaging. Radiology. 2009;252:477–85.

    Article  PubMed  Google Scholar 

  11. Baur-Melnyk A, et al. Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. AJR Am J Roentgenol. 2008;190:1097–104.

    Article  PubMed  Google Scholar 

  12. Lecouvet F, et al. Long-term effects of localized spinal radiation therapy on vertebral fractures and focal lesions appearance in patients with multiple myeloma. Br J Haematol. 1997;96:743–5.

    Article  CAS  PubMed  Google Scholar 

  13. Spinnato P, et al. Contrast enhanced MRI and 18F-FDG PET-CT in the assessment of multiple myeloma: a comparison of results in different phases of the disease. Eur J Radiol. 2012;81(12):4013–8 doi: 10.1016/j.ejrad.2012.06.028. Epub 2012 Aug 24.

  14. Rahmouni A, et al. Detection of multiple myeloma involving the spine: efficacy of fat-suppression and contrast-enhanced MR imaging. AJR Am J Roentgenol. 1993;160(5):1049–52.

  15. Zamagni E, et al. A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica. 2007;92:50–5.

    Article  PubMed  Google Scholar 

  16. Zamagni E, et al. Positron emission tomography with computed tomography-based diagnosis of massive extramedullary progression in a patient with high-risk multiple myeloma. Clin Lymphoma Myeloma Leuk. 2014;14:e101–4.

    Article  PubMed  Google Scholar 

  17. Cavo M, et al. Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group. Lancet Oncol. 2017;8(4):e206–e217.

  18. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50(Suppl 1):11S–20S.

    Article  CAS  PubMed  Google Scholar 

  19. Boellaard R, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.

    Article  CAS  PubMed  Google Scholar 

  20. Zamagni E, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. 2011;118:5989–95.

    Article  CAS  PubMed  Google Scholar 

  21. Bartel TB, et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood. 2009;114:2068–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Usmani SZ, et al. Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with total therapy 3. Blood. 2013;121:1819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nanni C, et al. The value of 18F-FDG PET/CT after autologous stem cell transplantation (ASCT) in patients affected by multiple myeloma (MM): experience with 77 patients. Clin Nucl Med. 2013;38:e74–9.

    Article  PubMed  Google Scholar 

  24. Patriarca F, et al. The role of positron emission tomography with 18F-Fluorodeoxyglucose integrated with computed tomography in the evaluation of patients with multiple myeloma undergoing allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2015; doi:10.1016/j.bbmt.2015.03.001.

  25. Dimitrakopoulou-Strauss A, et al. Prediction of progression-free survival in patients with multiple myeloma following anthracycline-based chemotherapy based on dynamic FDG-PET. Clin Nucl Med. 2009;34:576–84.

    Article  PubMed  Google Scholar 

  26. Kumar S, et al. International myeloma working group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17:e328–46.

    Article  PubMed  Google Scholar 

  27. Derlin T, et al. Comparative diagnostic performance of (1)(8)F-FDG PET/CT versus whole-body MRI for determination of remission status in multiple myeloma after stem cell transplantation. Eur Radiol. 2013;23:570–8.

    Article  PubMed  Google Scholar 

  28. Mesguich C, et al. State of the art imaging of multiple myeloma: comparative review of FDG PET/CT imaging in various clinical settings. Eur J Radiol. 2014;83:2203–23.

    Article  PubMed  Google Scholar 

  29. Nanni C, et al. Image interpretation criteria for FDG PET/CT in multiple myeloma: a new proposal from an Italian expert panel. IMPeTUs (Italian myeloma criteria for PET USe). Eur J Nucl Med Mol Imaging. 2016;43:414–21.

    Article  CAS  PubMed  Google Scholar 

  30. McDonald JE, et al. Assessment of Total lesion glycolysis by 18F FDG PET/CT significantly improves prognostic value of GEP and ISS in myeloma. Clin Cancer Res. 2016; doi:10.1158/1078-0432.CCR-16-0235.

  31. Lasnon C, Enilorac B, Popotte H, Aide N. Impact of the EARL harmonization program on automatic delineation of metabolic active tumour volumes (MATVs). EJNMMI Res. 2017;7:30.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nanni C, et al. 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol. 2007;5

  33. Lapa C, et al. 11C-Methionine-PET in multiple myeloma: correlation with clinical parameters and bone marrow involvement. Theranostics. 2016;6:254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Okasaki M, et al. Comparison of (11)C-4′-thiothymidine, (11)C-methionine, and (18)F-FDG PET/CT for the detection of active lesions of multiple myeloma. Ann Nucl Med. 2015;29:224–32.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu W, Dang Y, Ma Y, Li F, Huo L. 11C-Acetate PET/CT monitoring therapy of multiple myeloma. Clin Nucl Med. 2016;41:587–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Nanni.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanni, C., Zamagni, E. Therapy assessment in multiple myeloma with PET. Eur J Nucl Med Mol Imaging 44 (Suppl 1), 111–117 (2017). https://doi.org/10.1007/s00259-017-3730-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-017-3730-4

Keywords

Navigation