Skip to main content
Log in

Sites of latest mechanical activation as assessed by SPECT myocardial perfusion imaging in ischemic and dilated cardiomyopathy patients with LBBB

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Objective

Sites of latest mechanical activation (SOLA) have been recognized as optimal left-ventricular (LV) lead positions for cardiac resynchronization therapy (CRT). This study was aimed to investigate SOLA in ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) patients with left bundle branch block (LBBB).

Methods

Sixty-four consecutive LBBB patients (47 DCM, 17 ICM), who met the standard indications for CRT and underwent resting SPECT myocardial perfusion imaging (MPI), were selected. Phase analysis was used to assess LV dyssynchrony and SOLA. The Emory Cardiac Toolbox was used to measure perfusion defects. LV dyssynchrony and SOLA were compared between the DCM patients with wide (≥150 ms) and moderate (120-150 ms) QRS durations (QRSd). The relationship between SOLA and perfusion defects was analyzed in the ICM patients.

Results

The DCM patients with wide QRSd had significantly more LV dyssynchrony than those with moderate QRSd. Lateral SOLA were significantly more frequent in the DCM patients with wide QRSd than those with moderate QRSd (96 % vs. 62 %, p = 0.010). In the ICM patients, SOLA were either in the scar segments (82 %) or in the segments immediately adjacent to the scar segments (18 %), regardless of QRSd.

Conclusion

Lateral SOLA were more frequent in the DCM patients with wide QRSd than those with moderate QRSd. Such relationship was not observed in the ICM patients, where SOLA were associated with scar location rather than QRSd. These findings support the use of SPECT MPI to aid the selection of potential CRT responders and guide LV lead placement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lozano I, Bocchiardo M, Achtelik M, Gaita F, Trappe HJ, Daoud E, et al. Impact of biventricular pacing on mortality in a randomized crossover study of patients with heart failure and ventricular arrhythmias. Pacing Clin Electrophysiol. 2000;23:1711–2.

    Article  CAS  PubMed  Google Scholar 

  2. Cazeau S, Leclercq C, Lavergne T, Walker S, Varma C, Linde C, et al. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med. 2001;344:873–80.

    Article  CAS  PubMed  Google Scholar 

  3. Auricchio A, Stellbrink C, Sack S, Block M, Vogt J, Bakker P, et al. Long-term clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. J Am Coll Cardiol. 2002;39:2026–33.

    Article  PubMed  Google Scholar 

  4. Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346:1845–53.

    Article  PubMed  Google Scholar 

  5. Young JB, Abraham WT, Smith AL, Leon AR, Lieberman R, Wilkoff B, et al. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD Trial. JAMA. 2003;289:2685–94.

    Article  PubMed  Google Scholar 

  6. Auricchio A, Stellbrink C, Butter C, Sack S, Vogt J, Misier AR, et al. Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay. J Am Coll Cardiol. 2003;42:2109–16.

    Article  PubMed  Google Scholar 

  7. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–50.

    Article  CAS  PubMed  Google Scholar 

  8. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–49.

    Article  CAS  PubMed  Google Scholar 

  9. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation 2013;127:e283-352.

    Google Scholar 

  10. Bax JJ, Bleeker GB, Marwick TH, Molhoek SG, Boersma E, Steendijk P, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol. 2004;44:1834–40.

    Article  PubMed  Google Scholar 

  11. Yu CM, Fung JW, Zhang Q, Chan CK, Chan YS, Lin H, et al. Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation. 2004;110:66–73.

    Article  PubMed  Google Scholar 

  12. Yu CM, Zhang Q, Chan YS, Chan CK, Yip GW, Kum LC, et al. Tissue Doppler velocity is superior to displacement and strain mapping in predicting left ventricular reverse remodeling response after cardiac resynchronization therapy. Heart. 2006;92:1452–6.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Donal E, de Chillou C, Magnin-Poull I, Leclercq C. Imaging in cardiac resynchronization therapy: what does the clinician need? Europace. 2008;10(3):iii70–2.

    PubMed  Google Scholar 

  14. Dupont M, Rickard J, Baranowski B, Varma N, Dresing T, Gabi A, et al. Differential response to cardiac resynchronization therapy and clinical outcomes according to QRS morphology and QRS duration. J Am Coll Cardiol. 2012;60:592–8.

    Article  PubMed  Google Scholar 

  15. Gold MR, Thebault C, Linde C, Abraham WT, Gerritse B, Ghio S. St John Sutton M, Daubert JC. Effect of QRS duration and morphology on cardiac resynchronization therapy outcomes in mild heart failure: results from the Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction (REVERSE) study. Circulation. 2012;126:822–9.

    Article  PubMed  Google Scholar 

  16. Peichl P, Kautzner J, Cihak R, Bytesnik J. The spectrum of inter- and intraventricular conduction abnormalities in patients eligible for cardiac resynchronization therapy. Pacing Clin Eletrophysiol. 2004;27:1105–12.

    Article  Google Scholar 

  17. McLeod CJ, Shen WK, Rea RF, Friedman PA, Hayes DL, Wokhlu A, et al. Differential outcome of cardiac resynchronization therapy in ischemic cardiomyopathy and idiopathic dilated cardiomyopathy. Heart Rhythm. 2011;8:377–82.

    Article  PubMed  Google Scholar 

  18. Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: Development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol. 2005;12:687–95.

    Article  PubMed  Google Scholar 

  19. Boogers MJ, Chen J, van Bommel RJ, Borleffs CJ, Dibbets-Schneider P, van der Heil B, et al. Optimal left ventricular lead position assessed with phase analysis on gated myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging. 2011;38:230–8.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Van Train KF, Areeda J, Garcia EV, Cooke CD, Maddahi J, Kiat H, et al. Quantitative same-day rest-stress technetium-99 m-sestamibi SPECT: Definition and validation of stress normal limits and criteria for abnormality. J Nucl Med. 1993;34:1494–502.

    PubMed  Google Scholar 

  21. Chen J, Garcia EV, Bax JJ, Iskandrian AE, Borges-Neto S, Soman P. SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony. J Nucl Cardiol. 2011;18:685–94.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Galt JR, Garcia EV, Robbins WL. Effects of myocardial wall thickness on SPECT quantification. IEEE Trans Med Imag. 1990;9:144–50.

    Article  CAS  Google Scholar 

  23. Henneman MM, Chen J, Ypenburg C, Dibbets P, Stokkel M, van der Wall EE, et al. Phase analysis of gated myocardial perfusion SPECT compared to tissue Doppler imaging for the assessment of left ventricular dyssynchrony. J Am Coll Cardiol. 2007;49:1708–14.

    Article  PubMed  Google Scholar 

  24. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation. 2002;105:539–42.

    Article  PubMed  Google Scholar 

  25. Samad Z, Atchley AE, Trimble MA, Sun JL, Shaw LK, Pagnanelli R, et al. Prevalence and predictors of mechanical dyssynchrony as defined by phase analysis in patients with left ventricular dysfunction undergoing gated SPECT myocardial perfusion imaging. J Nucl Cardiol. 2011;18:24–30.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hawkins NM, Petrie MC, MacDonald MR, Hogg KJ, McMurray JJ. Selecting patients for cardiac resynchronization therapy: electrical or mechanical dyssynchrony? Eur Heart J. 2006;27:1270–81.

    Article  PubMed  Google Scholar 

  27. Bleeker GB, Mollema SA, Holman ER, van de Veire N, Ypenburg C, Boersma E, et al. Left ventricular resynchronization is mandatory for response to cardiac resynchronization therapy: analysis in patients with echocardiographic evidence of left ventricular dyssynchrony at baseline. Circulation. 2007;116:1440–8.

    Article  PubMed  Google Scholar 

  28. Leyva F. Cardiac resynchronization therapy guided by cardiac magnetic resonance. J Cardiovasc Magn Reson. 2010;12:64.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Henneman MM, Chen J, Dibbets P, Stokkel M, Bleeker GB, Ypenburg C, et al. Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J Nucl Med. 2007;48:1104–11.

    Article  PubMed  Google Scholar 

  30. Toussaint JF, Lavergne T, Kerrou K, Froissart M, Ollitrault J, Darondel JM, et al. Basal asynchrony and resynchronization with biventricular pacing predict long-term improvement of LV function in heart failure patients. Pacing Clin Electrophysiol. 2003;26:1815–23.

    Article  PubMed  Google Scholar 

  31. White JA, Yee R, Yuan X, Krahn A, Skanes A, Parker M, et al. Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol. 2006;48:1953–60.

    Article  PubMed  Google Scholar 

  32. Adelstein EC, Saba S. Scar burden by myocardial perfusion imaging predicts echocardiographic response to cardiac resynchronization therapy in ischemic cardiomyopathy. Am Heart J. 2007;153:105–12.

    Article  PubMed  Google Scholar 

  33. Khan FZ, Virdee MS, Fynn SP, Dutka DP. Left ventricular lead placement in cardiac resynchronization therapy: where and how? Europace. 2009;11:554–61.

    Article  PubMed  Google Scholar 

  34. Ypenburg C, van Bommel RJ, Delgado V, Mollema SA, Bleeker GB, Boersma E, et al. Optimal left ventricular lead position predicts reverse remodeling and survival after cardiac resynchronization therapy. J Am Coll Cardiol. 2008;52:1402–9.

    Article  PubMed  Google Scholar 

  35. Schwartzman D, Chang I, Michele JJ, Mirotznik MS, Foster KR. Electrical impedance properties of normal and chronically infarcted ventricular myocardium. J Interv Card Electrophysiol. 1999;3:213–24.

    Article  CAS  PubMed  Google Scholar 

  36. Reddy VY, Wrobleski D, Houghtaling C, Josephson ME, Ruskin JN. Combined Epicardial and Endocardial Electroanatomic Mapping in a Porcine Model of Healed Myocardial Infarction. Circulation. 2003;107:3236–42.

    Article  PubMed  Google Scholar 

  37. Bleeker GB, Kaandorp TA, Lamb HJ, Boersma E, Steendijk P, de Roos A, et al. Effect of postero-lateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation. 2006;113:969–76.

    Article  PubMed  Google Scholar 

  38. Friehling M, Chen J, Saba S, Bazaz R, Schwartzman D, Adelstein EC, et al. The relationship between acute change in LV mechanical synchrony after cardiac resynchronization therapy and patient outcome: Prospective evaluation by a novel, single-injection, gated-SPECT protocol. Circ Cardiovasc Imaging. 2011;4:532–9.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported in part by a US NIH grant (1R01HL094438, PI: Ji Chen, PhD).

Conflicts of interest

Dr. Chen receives royalties from the sale of the Emory Cardiac Toolbox with SyncTool. The terms of this arrangement have been approved by Emory University in accordance with its conflict-of-interest practice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, X., Xu, H., Zhao, X. et al. Sites of latest mechanical activation as assessed by SPECT myocardial perfusion imaging in ischemic and dilated cardiomyopathy patients with LBBB. Eur J Nucl Med Mol Imaging 41, 1232–1239 (2014). https://doi.org/10.1007/s00259-014-2718-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2718-6

Keywords

Navigation