Skip to main content
Log in

The production of [124I]iodine and [86Y]yttrium

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The use of paired tracers such as 124I/131I and 86Y/90Y allows pretherapy PET imaging with positron emitting radioisotopes of the same element as used for therapy. Whereas nowadays most therapy nuclides are produced by reactors or generators, the production of the corresponding PET isotopes requires the irradiation of adequate targets using particle accelerators such as cyclotrons. This paper describes the production routes for 124I and 86Y.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ott RJ. Imaging technologies for radionuclide dosimetry. Phys Med Biol. 1996;41:1885–94.

    Article  PubMed  CAS  Google Scholar 

  2. Blasberg RG, Roelcke U, Weinreich R, von Ammon K, Crompton N, Günther I, et al. [124I]Iododeoxyuridine imaging tumor proliferation. J Nucl Med. 1996;37 Suppl:P59.

    Google Scholar 

  3. Wilson CB, Snook DE, Dhokia B, Taylor CV, Watson IA, Lammertsma AA, et al. Quantitative measurement of monoclonal antibody distribution and blood flow using positron emission tomography and 124iodine in patients with breast cancer. Int J Cancer. 1991;47:344–7.

    Article  PubMed  CAS  Google Scholar 

  4. Langen KJ, Coenen HH, Roosen N, Kling P, Muzik O, Herzog H, et al. SPECT studies of brain tumors with L-3-[123I] iodo-alpha-methyl tyrosine: comparison with PET, 124IMT and first clinical results. J Nucl Med. 1990;31:281–6.

    PubMed  CAS  Google Scholar 

  5. Frey P, Townsend D, Falattet A, De Gautard R, Widgren S, Jeavons A, et al. Tomographic imaging of the human thyroid using 124I. J Clin Endocrinol Metab. 1986;63:918–27.

    Article  PubMed  CAS  Google Scholar 

  6. Stepanek J, Larsson B, Weinreich R. Auger-electron spectra of radionuclides for therapy and diagnostics. Acta Oncol. 1996;35:863–8.

    Article  PubMed  CAS  Google Scholar 

  7. Freudenberg L, Jentzen W, Görges R, Petrich T, Marlowe RJ, Knust J, et al. 124I-PET-dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin. 2007;46:121–8.

    PubMed  CAS  Google Scholar 

  8. Ott RJ, Tait D, Flower MA, Babich JW, Lambrecht RM. Treatment panning for I-131-mIBG radiotherapy of neural crest tumours using I-124-mIBG positron emission tomography. Br J Radiol. 1992;65:787–91.

    Article  PubMed  CAS  Google Scholar 

  9. Kondo K, Lambrecht RM, Norton EF, Wolf AP. Cyclotron isotopes and radiopharmaceuticals--XXII. Improved targetry and radiochemistry for production of 123I and 124I. Int J Appl Radiat Isot. 1977;28:765–71.

    Article  PubMed  CAS  Google Scholar 

  10. Akbari RB, Ott RJ, Trott NG, Sharma HL, Smith AG. Radionuclide purity and radiation dosimetry of 124I used in positron tomography of the thyroid. Phys Med Biol. 1986;31:789–91.

    Article  PubMed  CAS  Google Scholar 

  11. Lambrecht RM, Sajjad M, Qureshi MA, Al-Yanbawi SJ. Production of iodine-124. J Radioanal Nucl Chem Lett. 1988;127:143–50.

    Article  CAS  Google Scholar 

  12. International Atomic Energy Agency. Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions, IAEA-TECDOC-1211, 2001; IAEA, Vienna

  13. Scholten B, Kovács Z, Tárkány F, Qaim SM. Excitation functions 124Te(p,xn)124,123I reactions from 6 to 31 MeV with special reference to the production of 124I at small cyclotron. Appl Radiat Isot. 1995;46:255–9.

    Article  CAS  Google Scholar 

  14. Firouzbakht ML, Schlyer DJ, Wolf AP. The yield of I-124 from different target materials in the 124Te(d,2n)124I reaction and improved recovery method for Te-124. J Labelled Comp Radiopharm. 1994;35:257–9.

    Google Scholar 

  15. Van den Bosch R, De Goeij JJ, Van der Heide JA, Tertoolen JF, Theelen HM, Zegers C. A new approach to target chemistry for the iodine-123 production via the 124Te(p,2n) reaction. Int J Appl Radiat Isot. 1977;28:255–61.

    Article  PubMed  Google Scholar 

  16. Shikata E, Amano H. Dry distillation of iodine-131 from several tellurium compounds. J Nucl Sci Technol. 1973;10:80–8.

    Article  CAS  Google Scholar 

  17. Knust EJ, Dutschka K, Weinreich R. Preparation of 124I solutions after thermodistillation of irradiated 124TeO2 targets. Appl Radiat Isot. 2000;52:181–4.

    Article  PubMed  CAS  Google Scholar 

  18. Förster GJ, Engelbach M, Brockmann J, Reber HJ, Buchholz HG, Mäcke HR, et al. Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumours: comparison of (86)Y-DOTATOC and (111)In-DTPA-octreotide. Eur J Nucl Med. 2001;28:1743–50.

    Article  PubMed  Google Scholar 

  19. Rösch F, Qaim SM, Stöcklin G. Production of the positron emitting radioisotope 86Y for nuclear medical applications. Int J Appl Radiat Isot. 1993;44:677–81.

    Article  Google Scholar 

  20. Sachdev DR, Porile NT, Yaffe L. Reactions of Sr-88 with protons of energies 7-85 MeV. Can J Chem. 1967;45:1149–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Schmitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, J. The production of [124I]iodine and [86Y]yttrium. Eur J Nucl Med Mol Imaging 38 (Suppl 1), 4–9 (2011). https://doi.org/10.1007/s00259-011-1782-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1782-4

Keywords

Navigation