Skip to main content

Advertisement

Log in

Baseline knee joint effusion and medial femoral bone marrow edema, in addition to MRI-based T2 relaxation time and texture measurements of knee cartilage, can help predict incident total knee arthroplasty 4–7 years later: data from the Osteoarthritis Initiative

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate if baseline pathological knee conditions as assessed via single features of the MR-based Whole-Organ Magnetic Resonance Imaging Scoring (WORMS), standard T2, and T2 gray-level co-occurrence matrix (GLCM) texture parameters of knee cartilage can serve as potential long-term radiological predictors of incident total knee arthroplasty (TKA) 4–7 years later.

Materials and methods

Baseline 3-T knee MRIs of 309 subjects from the Osteoarthritis Initiative (n = 81 TKA cases, with right-knee TKA 4–7 years after enrolment, and n = 228 TKA-free matched controls) were evaluated for the presence and severity of pathological knee conditions via modified WORMS. Knee cartilage was segmented and standard T2 cartilage and T2 GLCM texture measures (contrast, variance) were computed. Statistical analysis employed conditional logistic regression.

Results

We found that a one-point increase on the joint effusion scale, the bone marrow edema scale or on the cartilage lesion scale at baseline predicted incident TKA (ORs: 2.45, 1.65, and 1.37 respectively (p ≤ 0.003)). For T2 cartilage measurements, we observed that in the lateral femur, a 1-SD increase in T2 relaxation time yielded a 28% increase in the odds of TKA (1.28 [1.09–1.643], p = 0.046). When looking at cartilage texture, we similarly noted that a 1-SD increase in the cartilage texture parameter “contrast” was associated with a 33–40% increased risk of incident TKA in the lateral femur and tibia (0.003 ≤ p ≤ 0.021), as was a 1-SD increase in the texture parameter “variance” in the lateral femur (p = 0.002).

Conclusion

Radiological evaluation of standard knee MR images via single WORMS features and T2 standard and texture analysis at baseline can help predict the patient’s individual risk for an incident TKA 4–7 years later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–5.

    PubMed  Google Scholar 

  2. Wilson MG, Kelley K, Thornhill TS. Infection as a complication of total knee-replacement arthroplasty. Risk factors and treatment in sixty-seven cases. J Bone Joint Surg Am. 1990;72(6):878–83.

    Article  CAS  PubMed  Google Scholar 

  3. Januel JM, Chen G, Ruffieux C, Quan H, Douketis JD, Crowther MA, et al. Symptomatic in-hospital deep vein thrombosis and pulmonary embolism following hip and knee arthroplasty among patients receiving recommended prophylaxis: a systematic review. JAMA. 2012;307(3):294–303.

    Article  CAS  PubMed  Google Scholar 

  4. Pabinger C, Berghold A, Boehler N, Labek G. Revision rates after knee replacement. Cumulative results from worldwide clinical studies versus joint registers. Osteoarthritis Cartilage. 2013;21(2):263–8.

    Article  CAS  PubMed  Google Scholar 

  5. Hamilton DF, Howie CR, Burnett R, Simpson AH, Patton JT. Dealing with the predicted increase in demand for revision total knee arthroplasty: challenges, risks and opportunities. Bone joint J. 2015;97-B(6):723–8.

    Article  CAS  PubMed  Google Scholar 

  6. Bhandari M, Smith J, Miller LE, Block JE. Clinical and economic burden of revision knee arthroplasty. Clin Med Insights Arthritis Musculoskelet Disord. 2012;5:89–94.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cicuttini FM, Jones G, Forbes A, Wluka AE. Rate of cartilage loss at two years predicts subsequent total knee arthroplasty: a prospective study. Ann Rheum Dis. 2004;63(9):1124–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wluka AE, Ding C, Jones G, Cicuttini FM. The clinical correlates of articular cartilage defects in symptomatic knee osteoarthritis: a prospective study. Rheumatology (Oxford). 2005;44(10):1311–6.

    Article  CAS  Google Scholar 

  9. Scher C, Craig J, Nelson F. Bone marrow edema in the knee in osteoarthrosis and association with total knee arthroplasty within a three-year follow-up. Skeletal Radiol. 2008;37(7):609–17.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hafezi-Nejad N, Zikria B, Eng J, Carrino JA, Demehri S. Predictive value of semi-quantitative MRI-based scoring systems for future knee replacement: data from the Osteoarthritis Initiative. Skeletal Radiol. 2015;44(11):1655–62.

    Article  PubMed  Google Scholar 

  11. Roemer FW, Kwoh CK, Hannon MJ, Hunter DJ, Eckstein F, Wang Z, et al. Can structural joint damage measured with MR imaging be used to predict knee replacement in the following year? Radiology. 2015;274(3):810–20.

    Article  PubMed  Google Scholar 

  12. Raynauld JP, Martel-Pelletier J, Haraoui B, Choquette D, Dorais M, Wildi LM, et al. Risk factors predictive of joint replacement in a 2-year multicentre clinical trial in knee osteoarthritis using MRI: results from over 6 years of observation. Ann Rheum Dis. 2011;70(8):1382–8.

    Article  PubMed  Google Scholar 

  13. Mosher TJ, Dardzinski BJ, Cartilage MRI. T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004;8(4):355–68.

    Article  PubMed  Google Scholar 

  14. Haralick RM. Statistical and structured approaches to texture. Proc IEEE. 1979;67(5):786–804.

    Article  Google Scholar 

  15. Joseph GB, Baum T, Carballido-Gamio J, Nardo L, Virayavanich W, Alizai H, et al. Texture analysis of cartilage T2 maps: individuals with risk factors for OA have higher and more heterogeneous knee cartilage MR T2 compared to normal controls--data from the Osteoarthritis Initiative. Arthritis Res Ther. 2011;13(5):R153.

    Article  Google Scholar 

  16. Baum T, Joseph GB, Karampinos DC, Jungmann PM, Link TM, Bauer JS. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthritis Cartilage. 2013;21(10):1474–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eitner A, Hofmann GO, Schaible HG. Mechanisms of osteoarthritic pain. Studies in humans and experimental models. Front Mol Neurosci. 2017;10:349.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Nevitt M, Niu J, Lewis C, Torner J, Guermazi A, et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 2011;63(3):691–9.

    Article  PubMed  Google Scholar 

  19. Yusuf E, Bijsterbosch J, Slagboom PE, Kroon HM, Rosendaal FR, Huizinga TW, et al. Association between several clinical and radiological determinants with long-term clinical progression and good prognosis of lower limb osteoarthritis. PLoS One. 2011;6(10):e25426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pelletier JP, Cooper C, Peterfy C, Reginster JY, Brandi ML, Bruyere O, et al. What is the predictive value of MRI for the occurrence of knee replacement surgery in knee osteoarthritis? Ann Rheum Dis. 2013;72(10):1594–604.

    Article  PubMed  Google Scholar 

  21. Kellgren JH, Lawrence JS. Radiological assessment of osteoarthrosis. Ann Rheum Dis. 1957;16(4):494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Felson DT, Nevitt MC, Yang M, Clancy M, Niu J, Torner JC, et al. A new approach yields high rates of radiographic progression in knee osteoarthritis. J Rheumatol. 2008;35(10):2047–54.

    PubMed  PubMed Central  Google Scholar 

  23. Felson DT, Niu J, Guermazi A, Sack B, Aliabadi P. Defining radiographic incidence and progression of knee osteoarthritis: suggested modifications of the Kellgren and Lawrence scale. Ann Rheum Dis. 2011;70(11):1884–6.

    Article  PubMed  Google Scholar 

  24. Peterfy CG, Schneider E, Nevitt M. The Osteoarthritis Initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage. 2008;16(12):1433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12(3):177–90.

    Article  CAS  PubMed  Google Scholar 

  26. Joseph GB, McCulloch CE, Nevitt MC, Gersing AS, Schwaiger BJ, Kretzschmar M, et al. Medial femur T2 Z-scores predict the probability of knee structural worsening over 4–8 years: data from the Osteoarthritis Initiative. J Magn Reson Imaging. 2017;46(4):1128–36.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Laberge MA, Baum T, Virayavanich W, Nardo L, Nevitt MC, Lynch J, et al. Obesity increases the prevalence and severity of focal knee abnormalities diagnosed using 3T MRI in middle-aged subjects—data from the Osteoarthritis Initiative. Skeletal Radiol. 2012;41(6):633–41.

    Article  PubMed  Google Scholar 

  28. Kretzschmar M, Lin W, Nardo L, Joseph GB, Dunlop DD, Heilmeier U, et al. Association of physical activity measured by accelerometer, knee joint abnormalities, and cartilage T2 measurements obtained from 3T magnetic resonance imaging: data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken). 2015;67(9):1272–80.

    Article  CAS  Google Scholar 

  29. Hofmann FC, Neumann J, Heilmeier U, Joseph GB, Nevitt MC, McCulloch CE, et al. Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times: data from the Osteoarthritis Initiative. Skeletal Radiol. 2018;47(1):93–106.

    Article  PubMed  Google Scholar 

  30. Yu A, Heilmeier U, Kretzschmar M, Joseph GB, Liu F, Liebl H, et al. Racial differences in biochemical knee cartilage composition between African-American and Caucasian-American women with 3 T MR-based T2 relaxation time measurements—data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2015;23(9):1595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kretzschmar M, Heilmeier U, Yu A, Joseph GB, Liu F, Solka M, et al. Longitudinal analysis of cartilage T2 relaxation times and joint degeneration in African American and Caucasian American women over an observation period of 6 years—data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2016;24(8):1384–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gersing AS, Schwaiger BJ, Nevitt MC, Joseph GB, Chanchek N, Guimaraes JB, et al. Is weight loss associated with less progression of changes in knee articular cartilage among obese and overweight patients as assessed with MR imaging over 48 months? Data from the Osteoarthritis Initiative. Radiology. 2017;284(2):508–20.

    Article  PubMed  Google Scholar 

  33. Joseph GB, McCulloch CE, Nevitt MC, Heilmeier U, Nardo L, Lynch JA, et al. A reference database of cartilage 3 T MRI T2 values in knees without diagnostic evidence of cartilage degeneration: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2015;23(6):897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wise BL, Niu J, Guermazi A, Liu F, Heilmeier U, Ku E, et al. Magnetic resonance imaging lesions are more severe and cartilage T2 relaxation time measurements are higher in isolated lateral compartment radiographic knee osteoarthritis than in isolated medial compartment disease—data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2017;25(1):85-93.

    Article  CAS  PubMed  Google Scholar 

  35. Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math. 1963;11:431–41.

    Article  Google Scholar 

  36. Raya JG, Dietrich O, Horng A, Weber J, Reiser MF, Glaser C. T2 measurement in articular cartilage: impact of the fitting method on accuracy and precision at low SNR. Magn Reson Med. 2010;63(1):181–93.

    PubMed  Google Scholar 

  37. Smith HE, Mosher TJ, Dardzinski BJ, Collins BG, Collins CM, Yang QX, et al. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging. 2001;14(1):50–5.

    Article  PubMed  Google Scholar 

  38. Maier CF, Tan SG, Hariharan H, Potter HG. T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging. 2003;17(3):358–64.

    Article  PubMed  Google Scholar 

  39. Haralick R, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybernet. 1973;SMC-1:610–8.

    Article  Google Scholar 

  40. Carballido-Gamio J, Joseph GB, Lynch JA, Link TM, Majumdar S. Longitudinal analysis of MRI T2 knee cartilage laminar organization in a subset of patients from the Osteoarthritis Initiative: a texture approach. Magn Reson Med. 2011;65(4):1184–94.

    Article  PubMed  Google Scholar 

  41. Blumenkrantz G, Stahl R, Carballido-Gamio J, Zhao S, Lu Y, Munoz T, et al. The feasibility of characterizing the spatial distribution of cartilage T(2) using texture analysis. Osteoarthritis Cartilage. 2008;16(5):584–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stehling C, Baum T, Mueller-Hoecker C, Liebl H, Carballido-Gamio J, Joseph GB, et al. A novel fast knee cartilage segmentation technique for T2 measurements at MR imaging--data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2011;19(8):984–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jungmann PM, Kraus MS, Nardo L, Liebl H, Alizai H, Joseph GB, et al. T2 relaxation time measurements are limited in monitoring progression, once advanced cartilage defects at the knee occur: longitudinal data from the Osteoarthritis Initiative. J Magn Reson Imaging. 2013;38(6):1415–24.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Eckstein F, Kwoh CK, Boudreau RM, Wang Z, Hannon MJ, Cotofana S, et al. Quantitative MRI measures of cartilage predict knee replacement: a case-control study from the Osteoarthritis Initiative. Ann Rheum Dis. 2013;72(5):707–14.

    Article  PubMed  Google Scholar 

  45. Conaghan PG, D'Agostino MA, Le Bars M, Baron G, Schmidely N, Wakefield R, et al. Clinical and ultrasonographic predictors of joint replacement for knee osteoarthritis: results from a large, 3-year, prospective EULAR study. Ann Rheum Dis. 2010;69(4):644–7.

    Article  CAS  PubMed  Google Scholar 

  46. Hayashi D, Roemer FW, Katur A, Felson DT, Yang SO, Alomran F, et al. Imaging of synovitis in osteoarthritis: current status and outlook. Semin Arthritis Rheum. 2011;41(2):116–30.

    Article  PubMed  Google Scholar 

  47. Atukorala I, Kwoh CK, Guermazi A, Roemer FW, Boudreau RM, Hannon MJ, et al. Synovitis in knee osteoarthritis: a precursor of disease? Ann Rheum Dis. 2016;75(2):390–5.

    Article  CAS  PubMed  Google Scholar 

  48. Liu-Bryan R, Terkeltaub R. Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol. 2015;11(1):35–44.

    Article  CAS  PubMed  Google Scholar 

  49. Suarez-Almazor ME, Richardson M, Kroll TL, Sharf BF. A qualitative analysis of decision-making for total knee replacement in patients with osteoarthritis. J Clin Rheumatol. 2010;16(4):158–63.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Singh JA, Colligan RC, O'Byrne MM, Lewallen DG. Do pessimists report worse outcomes after total hip arthroplasty? BMC Musculoskelet Disord. 2016;17:203.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Borkhoff CM, Hawker GA, Wright JG. Patient gender affects the referral and recommendation for total joint arthroplasty. Clin Orthop Relat Res. 2011;469(7):1829–37.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Felix Liu, John Lynch, and Nancy Lane for their valuable input and support. In addition, we would like to thank Prof. Nevitt and Prof. McCulloch for their statistical support.

Funds and grants

The study was supported by the Osteoarthritis Initiative, a public–private partnership comprising 5 NIH contracts (National Institute of Arthritis and Musculoskeletal and Skin Diseases contracts N01-AR-2-2258, N01-AR-2-2259, N01-AR-2-2260, N01-AR-2-2261, and N01-AR-2-2262), with research conducted by the Osteoarthritis Initiative Study Investigators. The study also received funding in part by the Intramural Research Program of the National Institute on Aging, NIH. Private funding partners involved are Merck Research, Novartis Pharmaceuticals, GlaxoSmithKline, and Pfizer; the private sector funding for the Osteoarthritis Initiative is orchestrated by the Foundation for the National Institutes of Health. This manuscript was prepared using an OAI public use data set and does not necessarily reflect the opinions or views of the OAI investigators, the NIH, or the private funding partners. The analyses were also funded through several grants awarded by NIH NIAMS (National Institute of Arthritis and Musculoskeletal and Skin Diseases): these were NIH U01-AR059507 (to TML), NIH P50-AR060752 (to TML) and NIH R01AR064771 (to TML).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Heilmeier.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The OAI multicenter study is HIPAA-compliant and received approval by the institutional review boards at each clinical site. All study participants consented in writing to the study before study participation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heilmeier, U., Wamba, J.M., Joseph, G.B. et al. Baseline knee joint effusion and medial femoral bone marrow edema, in addition to MRI-based T2 relaxation time and texture measurements of knee cartilage, can help predict incident total knee arthroplasty 4–7 years later: data from the Osteoarthritis Initiative. Skeletal Radiol 48, 89–101 (2019). https://doi.org/10.1007/s00256-018-2995-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-018-2995-4

Keywords

Navigation