Skip to main content

Advertisement

Log in

Biochemical characterization of a novel α-L-fucosidase from Pedobacter sp. and its application in synthesis of 3′-fucosyllactose and 2′-fucosyllactose

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fucosyllactoses have gained much attention owing to their multiple functions, including prebiotic, immune, gut, and cognition benefits. In this study, human milk oligosaccharide (HMO) 2′-fucosyllactose (α-L-Fuc-(1,2)-D-Galβ-1,4-Glu, 2′FL) and its isomer 3′-fucosyllactose (α-L-Fuc-(1,3)-D-Galβ-1,4-Glu, 3′FL) with potential prebiotic effect were synthesized efficiently by a novel recombinant α-L-fucosidase. An α-L-fucosidase gene (PbFuc) from Pedobacter sp. CAU209 was successfully cloned and expressed in Escherichia coli (E. coli). The deduced amino acid sequence shared the highest identity of 36.8% with the amino sequences of other reported α-L-fucosidases. The purified α-L-fucosidase (PbFuc) had a molecular mass of 50 kDa. The enzyme exhibited specific activity (26.3 U/mg) towards 4-nitrophenyl-α-L-fucopyranoside (pNP-FUC), 3′FL (8.9 U/mg), and 2′FL (3.4 U/mg). It showed the highest activity at pH 5.0 and 35 °C, respectively. PbFuc catalyzed the synthesis of 3′FL and 2′FL through a transglycosylation reaction using pNP-FUC as donor and lactose as acceptor, and total conversion ratio was up to 85% at the optimized reaction conditions. The synthesized mixture of 2′FL and 3′FL promoted the growth of Lactobacillus delbrueckii subsp. bulgaricus NRRL B-548, L. casei subsp. casei NRRL B-1922, L. casei subsp. casei AS 1.2435, and Bifidobacterium longum NRRL B-41409. However, the growths of E. coli ATCC 11775, S. enterica AS 1.1552, L. monocytogenes CICC 21635, and S. aureus AS 1.1861 were not stimulated by the mixture of 2′FL and 3′FL. Overall, our findings suggest that PbFuc possesses a great potential for the specific synthesis of fucosylated compounds.

Key Points

• A novel α-L-fucosidase (PbFuc) from Pedobacter sp. was cloned and expressed.

• PbFuc showed the highest hydrolysis activity at pH 5.0 and 35 °C, respectively.

• It was used for synthesis of 3′-fucosyllactose (3FL) and 2′-fucosyllactose (2FL).

• The mixture of 3FL and 2FL promoted the growth of some Lactobacillus sp. and Bifidobacteria sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Funding

This work was supported by the National Natural Science Foundation of China, grant numbers 31630096 and 31822037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqiang Jiang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 788 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Ma, J., Yan, Q. et al. Biochemical characterization of a novel α-L-fucosidase from Pedobacter sp. and its application in synthesis of 3′-fucosyllactose and 2′-fucosyllactose. Appl Microbiol Biotechnol 104, 5813–5826 (2020). https://doi.org/10.1007/s00253-020-10630-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10630-y

Keywords

Navigation