Skip to main content
Log in

Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The past few years observed a breakthrough of genome sequences of bacteria of Rhodococcus genus with significant biodegradation abilities. Invaluable knowledge from genome data and their functional analysis can be applied to develop and design strategies for attenuating damages caused by hydrocarbon contamination. With the advent of high-throughput -omic technologies, it is currently possible to utilize the functional properties of diverse catabolic genes, analyze an entire system at the level of molecule (DNA, RNA, protein, and metabolite), simultaneously predict and construct catabolic degradation pathways. In this review, the genes involved in the biodegradation of hydrocarbons and several emerging plasticizer compounds in Rhodococcus strains are described in detail (aliphatic, aromatics, PAH, phthalate, polyethylene, and polyisoprene). The metabolic biodegradation networks predicted from omics-derived data along with the catabolic enzymes exploited in diverse biotechnological and bioremediation applications are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasian F, Palanisami T, Megharaj M, Naidu R, Lockington R, Ramadass K (2016) Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis. Biotechnol Prog 32:638–648

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM (2010) Central metabolism of the species of the genus Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus. Springer-Verlag, Berlin Heidelber, pp 91–108

    Chapter  Google Scholar 

  • Amouric A, Quéméneur M, Grossi V, Liebgott PP, Auria R, Casalot L (2010) Identification of different alkane hydroxylase systems in Rhodococcus ruber strain SP2B, an hexane-degrading actinomycete. J Appl Microbiol 108:1903–1916

    Article  CAS  PubMed  Google Scholar 

  • Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43

    Article  PubMed  Google Scholar 

  • Bernhardt R, Urlacher VB (2014) Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol 98:6185–6203

    Article  CAS  PubMed  Google Scholar 

  • Cappelletti M, Fedi S, Frascari D, Ohtake H, Turner RJ, Zannoni D (2011) Analyses of both the alkB gene transcriptional start site and alkB promoter-inducing properties of Rhodococcus sp. strain BCP1 grown on n-alkanes. Appl Environ Microbiol 77:1619–1627

    Article  CAS  PubMed  Google Scholar 

  • Cappelletti M, Di Gennaro P, D’Ursi P, Orro A, Mezzelani A, Landini M, Fedi S, Frascari D, Presentato A, Zannoni D, Milanesi L (2013) Genome sequence of Rhodococcus sp. strain BCP1, a biodegrader of alkanes and chlorinated compounds. Genome Announc 1:e00657–e00613

    Article  PubMed  PubMed Central  Google Scholar 

  • Cappelletti M, Presentato A, Milazzo G, Turner RJ, Fedi S, Frascari D, Zannoni D (2015) Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes. Front Microbiol https://doi.org/10.3389/fmicb.2015.00393

  • Cardini G, Jurtshuk P (1970) The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7E1C. J Biol Chem 245:2789–2796

    CAS  PubMed  Google Scholar 

  • Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71

    Article  CAS  PubMed  Google Scholar 

  • Choi KY, Kim D, Sul WJ, Chae J-C, Zylstra GJ, Kim YM, Kim E (2005) Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17. FEMS Microbiol Lett 252:207–213

    Article  CAS  PubMed  Google Scholar 

  • Ciavarelli R, Cappelletti M, Fedi S, Pinelli D, Frascari D (2012) Chloroform aerobic cometabolism by butane-growing Rhodococcus aetherivorans BCP1 in continuous-flow biofilm reactors. Bioprocess Biosyst Eng 35:667–681

    Article  CAS  PubMed  Google Scholar 

  • Crombie AT, El Khawand M, Rhodius VA, Fengler KA, Miller MC, Whited GM, Mcgenity TJ, Murrell JC (2015) Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle. Environ Microbiol 17:3314–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Carvalho CCCR, Da Cruz AARL, Pons MN, Pinheiro HMRV, Cabral JMS, Da Fonseca MMR, Ferreira BS, Fernandes P (2004) Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents. Microsc Res Tech 64:215–222

    Article  PubMed  Google Scholar 

  • Di Canito A, Zampolli J, Orro A, D’Ursi P, Milanesi L, Sello G, Steinbüchel A, Di Gennaro P (2018) Genome-based analysis for the identification of genes involved in o-xylene degradation in Rhodococcus opacus R7. BMC Genomics 19:587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Gennaro P, Terreni P, Masi G, Botti S, De Ferra F, Bestetti G (2010) Identification and characterization of genes involved in naphthalene degradation in Rhodococcus opacus R7. Appl Microbiol Biotechnol 87:297–308

    Article  CAS  PubMed  Google Scholar 

  • Di Gennaro P, Zampolli J, Presti I, Cappelletti M, D’Ursi P, Orro A, Mezzelani A, Milanesi L (2014) Genome sequence of Rhodococcus opacus strain R7, a biodegrader of mono- and polycyclic aromatic hydrocarbons. Genome Announc 2:e00827

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Du Y, Hu L, Xu J, Long Y, Shen D (2016) Effects of sulfur-metabolizing bacterial community diversity on H2S emission behavior in landfills with different operation modes. Biodegradation 27:237–246

    Article  CAS  PubMed  Google Scholar 

  • Fialova A, Cejkova A, Masak J, Jirku V (2003) Comparison of yeast (Candida maltosa) and bacterial (Rhodococcus erythropolis) phenol hydroxylase activity and its properties in the phenolic compounds biodegradation. Commun Agric Appl Biol Sci 68:155–158

    CAS  PubMed  Google Scholar 

  • Field JA, Sierra-Alvarez R (2004) Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Rev Environ Sci Biotechnol 3:185–254

    Article  CAS  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, McKenney K, Sutton G, FitzHugh W, Fields C, Gocayne JD, Scott J, Shirley R, Liu LI, Glodek A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman JL, Fuhrmann JL, Geoghagen NSM, Gnehm CL, McDonald LA, Small KV, Fraser CM, Smith HO, Venter JC (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  CAS  PubMed  Google Scholar 

  • Goncalves ER, Hara H, Miyazawa D, Davies JE, Eltis LD, Mohn WW (2006) Transcriptomic assessment of isozymes in the biphenyl pathway of Rhodococcus sp. strain RHA1. Appl Environ Microbiol 72:6183–6193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravouil K, Ferru-Clément R, Colas S, Helye R, Kadri L, Bourdeau L, Moumen B, Mercier A, Ferreira T (2017) Transcriptomics and lipidomics of the environmental strain Rhodococcus ruber point out consumption pathways and potential metabolic bottlenecks for polyethylene degradation. Environ Sci Technol 51:5172–5181

    Article  CAS  PubMed  Google Scholar 

  • Guzik U, Greń I, Hupert-Kocurek K, Wojcieszyńska D (2011) Catechol 1,2-dioxygenase from the new aromatic compounds-degrading Pseudomonas putida strain N6. Int Biodeterior Biodegrad 65:504–512

    Article  CAS  Google Scholar 

  • Hara H, Eltis LD, Davies JE, Mohn WW (2007) Transcriptomic analysis reveals a bifurcated terephthalate degradation pathway in Rhodococcus sp. strain RHA1. J Bacteriol 189:1641–1647

    Article  CAS  PubMed  Google Scholar 

  • Hara H, Stewart GR, Mohn WW (2010) Involvement of a novel ABC transporter and monoalkyl phthalate ester hydrolase in phthalate ester catabolism by Rhodococcus jostii RHA1. Appl Environ Microbiol 76:1516–1523

    Article  CAS  PubMed  Google Scholar 

  • Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach ALB, Ghiviriga I, Dancel C, Abeel T, Gevers D, Kodira CD, Desany B, Affourtit JP, Birren BW, Sinskey AJ (2011) Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7:e1002219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imbernon L, Oikonomou EK, Norvez S, Leibler L (2015) Chemically crosslinked yet reprocess able epoxidized natural rubber via thermo-activated disulfide rearrangements. Polym Chem 6:4271–4278

    Article  CAS  Google Scholar 

  • Irvine VA, Kulakov LA, Larkin MJ (2000) The diversity of extradiol dioxygenase “edo” genes in cresol degrading rhodococci from a creosote-contaminated site that express a wide range of degradative abilities. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 78:341–352

    Article  CAS  Google Scholar 

  • Jang L, Keng H (2006) Development and characterization of as a monolayer for protein chips. Sens Mater 18:367–380

    CAS  Google Scholar 

  • Jones A, Goodfellow M (2010) Genus II. Rhodococcus (Zopf 1891) emend Goodfellow et al. 1998. In: Bergey’s Manual of Systematic Bacteriology, vol 4, 2nd edn. Springer, Berlin, pp 1–65

  • Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288

    Article  CAS  Google Scholar 

  • Khairy H, Meinert C, Wübbeler JH, Poehlein A, Daniel R, Voigt B, Riedel K, Steinbüchel A (2016) Genome and proteome analysis of Rhodococcus erythropolis MI2: elucidation of the 4,4′-dithiodibutyric acid catabolism. PLoS One 11:e0167539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Kim Y-S, Kim S-K, Kim SW, Zylstra GJ, Kim YM, Kim E (2002) Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Appl Environ Microbiol 68:3270–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Han HY, Lee YJ, Kim CW, Yang JW (2010) Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. Sci Total Environ 408:3162–3168

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Choi KY, Yoo M, Zylstra GJ, Kim E (2018) Biotechnological potential of Rhodococcus biodegradative pathways. J Microbiol Biotechnol 28:1037–1051

    CAS  PubMed  Google Scholar 

  • Kolomytseva MP, Baskunov BP, Golovleva LA (2007) Intradiol pathway of para-cresol conversion by Rhodococcus opacus 1CP. Biotechnol J 2:886–893

    Article  CAS  PubMed  Google Scholar 

  • Koutny M, Sancelme M, Dabin C, Pichon N, Delort AM, Lemaire J (2006) Acquired biodegradability of polyethylenes containing pro-oxidant additives. Polym Degrad Stab 91:1495–1503

    Article  CAS  Google Scholar 

  • Kulakov LA, Allen CCR, Lipscomb DA, Larkin MJ (2000) Cloning and characterization of a novel cis-naphthalene dihydrodiol dehydrogenase gene (narB) from Rhodococcus sp. NCIMB12038. FEMS Microbiol Lett 182:327–331

    Article  CAS  PubMed  Google Scholar 

  • Kulakov LA, Chen S, Allen CCR, Larkin MJ (2005) Web-type evolution of Rhodococcus gene clusters associated with utilization of naphthalene. Appl Environ Microbiol 71:1754–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulig JK, Spandolf C, Hyde R, Ruzzini AC, Eltis LD, Grönberg G, Hayes MA, Grogan G (2015) A P450 fusion library of heme domains from Rhodococcus jostii RHA1 and its evaluation for the biotransformation of drug molecules. Bioorganic Med Chem 23:5603–5609

    Article  CAS  Google Scholar 

  • Laczi K, Kis Á, Horváth B, Maróti G, Hegedüs B, Perei K, Rákhely G (2015) Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons. Appl Microbiol Biotechnol 99:9745–9759

    Article  CAS  PubMed  Google Scholar 

  • Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, Karpinets T, Lund O, Kora G, Wassenaar T, Poudel S, Ussery DW (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 15:141–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CC (2006) Biodegradation by members of the genus Rhodococcus: biochemistry, physiology, and genetic adaptation. Adv Appl Microbiol 59:1–29

    Article  CAS  PubMed  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CC (2010) Genomes and plasmids in Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus. Springer, Berlin, pp 73–90

    Chapter  Google Scholar 

  • LeBlanc JC, Gonçalves ER, Mohn WW (2008) Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 74:2627–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig W, Euzéby J, Schumann P, Buss HJ, Trujillo ME, Kämpfer P, Whiteman WB (2012) Road map of the phylum Actinobacteria. In: Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology. Springer-Verlag, New York, pp 1–28

    Google Scholar 

  • Martínková L, Uhnáková B, Pátek M, Nešvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    Article  CAS  PubMed  Google Scholar 

  • Maruyama T, Ishikura M, Taki H, Shindo K, Kasai H, Haga M, Inomata Y, Misawa N (2005) Isolation and characterization of o-xylene oxygenase genes from Rhodococcus opacus TKN14. Appl Environ Microbiol 71:7705–7715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJM, Holt R, Brinkman FSL, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103:15582–15587

    Article  PubMed  Google Scholar 

  • Michałowicz J, Duda W (2007) Phenols-sources and toxicity. Polish J Environ Stud 6:347–362

    Google Scholar 

  • Nanthini J, Chia KH, Thottathil GP, Taylor TD, Kondo S, Najimudin N, Baybayane P, Singh S, Sudesh K (2015) Complete genome sequence of Streptomyces sp. strain CFMR 7, a natural rubber degrading actinomycete isolated from Penang, Malaysia. J Biotechnol 214:47–48

    Article  CAS  PubMed  Google Scholar 

  • Orro A, Cappelletti M, D’Ursi P, Milanesi L, Di Canito A, Zampolli J, Collina E, Decorosi F, Viti C, Fedi S, Presentato A, Zannoni D, Di Gennaro P (2015) Genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: genetic determinants and metabolic abilities with environmental relevance. PLoS One 10:e0139467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak A, Chauhan A, Blom J, Indest KJ, Jung CM, Stothard P, Bera G, Green SJ, Ogram A (2016) Comparative genomics and metabolic analysis reveals peculiar characteristics of Rhodococcus opacus strain M213 particularly for naphthalene degradation. PLoS One 11:e0161032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrauchan MA, Florizone C, Dosanjh M, Mohn WW, Davies J, Eltis LD (2005) Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence. J Bacteriol 187:4050–4063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrauchan MA, Miyazawa D, LeBlanc JC, Aiga C, Florizone C, Dosanjh M, Davies J, Eltis LD, Mohn WW (2012) Proteomic analysis of survival of Rhodococcus jostii RHA1 during carbon starvation. Appl Environ Microbiol 78:6714–6725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Pantoja D, Donoso R, Junca H, González D, Pieper H (2009) Phylogenomics of aerobic bacterial degradation of aromatics. Handbook of hydrocarbon and lipid microbiology, In, pp 1355–1397

    Google Scholar 

  • Puglisi E, Cahill MJ, Lessard PA, Capri E, Sinskey AJ, Archer JAC, Boccazzi P (2010) Transcriptional response of Rhodococcus aetherivorans I24 to polychlorinated biphenyl-contaminated sediments. Microb Ecology 60:505–515

    Article  CAS  Google Scholar 

  • Rose K, Tenberge KB, Steinbüchel A (2005) Identification and characterization of genes from Streptomyces sp. strain K30 responsible for clear zone formation on natural rubber latex and poly(cis-1,4-isoprene) rubber degradation. Biomacromolecules 6:180–188

    Article  CAS  PubMed  Google Scholar 

  • Rosłoniec KZ, Wilbrink MH, Capyk JK, Mohn WW, Ostendorf M, Van Der Geize R, Dijkhuizen L, Eltis LD (2009) Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1. Mol Microbiol 74:1031–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosłoniec KZ, van der Geize R, Dijkhuizen L (2013) CYP257A1 of Rhodococcus jostii strain RHA1 represents a novel cytochrome P450 enzyme family with demethylase activity and a putative physiological role in sterol metabolism. Dissertation, University of Groningen

  • Sameshima Y, Honda K, Kato J, Omasa T, Ohtake H (2008) Expression of Rhodococcus opacus alkB genes in anhydrous organic solvents. J Biosci Bioeng 106:199–203

    Article  CAS  PubMed  Google Scholar 

  • Santo M, Weitsman R, Sivan A (2013) The role of the copper-binding enzyme-laccase-in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegrad 84:204–210

    Article  CAS  Google Scholar 

  • Sekine M, Tanikawa S, Omata S, Saito M, Fujisawa T, Tsukatani N, Tajima T, Sekigawa T, Kosugi H, Matsuo Y, Nishiko R, Imamura K, Ito M, Narita H, Tago S, Fujita N, Harayama S (2006) Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8 (2):334–346

  • Seto M, Kimbara K, Shimura M, Hatta T, Fukuda M, Yano K (1995) A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61:3353–3358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD (1996) Isoprene synthesis by plants and animals. Endeavour 20:74–78

    Article  CAS  PubMed  Google Scholar 

  • Shields-Menard SA, AmirSadeghi M, Green M, Womack E, Sparks DL, Blake J, Edelmann M, Ding X, Sukhbaatar B, Hernandez R, Donaldson JR, French T (2017) The effects of model aromatic lignin compounds on growth and lipid accumulation of Rhodococcus rhodochrous. Int Biodeterior Biodegrad 121:79–90

    Article  CAS  Google Scholar 

  • Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72:346–352

    Article  CAS  PubMed  Google Scholar 

  • Smith MR (1990) The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1:191–206

    Article  CAS  PubMed  Google Scholar 

  • Swain K, Casabon I, Eltis LD, Mohn WW (2012) Two transporters essential for reassimilation of novel cholate metabolites by Rhodococcus jostii RHA1. J Bacteriol 194:6720–6727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szőköl J, Rucká L, Šimčíková M, Halada P, Nešvera J, Pátek M (2014) Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii. Appl Microbiol Biotechnol 98:8267–8279

    Article  CAS  PubMed  Google Scholar 

  • Takeda H, Yamada A, Miyauchi K, Masai E, Fukuda M (2004) Characterization of transcriptional regulatory genes for biphenyl degradation in Rhodococcus sp. strain RHA1. J Bacteriol 186:2134–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Táncsics A, Benedek T, Farkas M, Máthé I, Márialigeti K, Szoboszlay S, Kukolya J, Kriszt B (2014) Sequence analysis of 16S rRNA, gyrB and catA genes and DNA-DNA hybridization reveal that Rhodococcus jialingiae is a later synonym of Rhodococcus qingshengii. Int J Syst Evol Microbiol 64:298–301

    Article  PubMed  Google Scholar 

  • Tao F, Zhao P, Li Q, Su F, Yu B, Ma C, Tang H, Tai C, Wu G, Xu P (2011) Genome sequence of Rhodococcus erythropolis XP, a biodesulfurizing bacterium with industrial potential. J Bacteriol 193:6422–6423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Beilen JB, Funhoff EG, Van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Röthlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261

    Article  CAS  PubMed  Google Scholar 

  • Van Hylckama Vlieg JET, Leemhuis H, LutjeSpelberg JH, Janssen DB (2000) Characterization of the gene cluster involved in isoprene metabolism in Rhodococcus sp. strain AD45. J Bacteriol 182:1956–1963

    Article  PubMed  PubMed Central  Google Scholar 

  • Vilchez-Vargas R, Junca H, Pieper DH (2010) Metabolic networks, microbial ecology and “omics” technologies: towards understanding in situ biodegradation processes. Environ Microbiol 12:3089–3104

    Article  CAS  PubMed  Google Scholar 

  • Watcharakul S, Röther W, Birke J, Umsakul K, Hodgson B, Jendrossek D (2016) Biochemical and spectroscopic characterization of purified latex clearing protein (Lcp) from newly isolated rubber degrading Rhodococcus rhodochrous strain RPK1 reveals novel properties of Lcp. BMC Microbiol 16:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whyte LG, Smits THM, Labbé D, Witholt B, Greer CW, Van Beilen JB (2002) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68:5933–5942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu-Xiang Z, Shu-Pei C, Cheng-Jun Z, Shi-Lei S (2006) Microbial PAH-degradation in soil: degradation pathways and contributing factors. Pedosphere 16:555–565

    Article  Google Scholar 

  • Yoneda A, Henson WR, Goldner NK, Park KJ, Forsberg KJ, Kim SJ, Pesesky MW, Foston M, Dantas G, Moon TS (2016) Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res 44:2240–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo M, Kim D, Choi KY, Chae JC, Zylstra GJ, Kim E (2012) Draft genome sequence and comparative analysis of the superb aromatic-hydrocarbon degrader Rhodococcus sp. strain DK17. J Bacteriol 194(16):4440

  • Zampolli J, Collina E, Lasagni M, Di Gennaro P (2014) Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism. AMB Express 4:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zídková L, Szoköl J, Rucká L, Pátek M, Nešvera J (2013) Biodegradation of phenol using recombinant plasmid-carrying Rhodococcus erythropolis strains. Int Biodeterior Biodegrad 84:179–184

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Di Gennaro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study were in compliance with ethical standards. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zampolli, J., Zeaiter, Z., Di Canito, A. et al. Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus. Appl Microbiol Biotechnol 103, 1069–1080 (2019). https://doi.org/10.1007/s00253-018-9539-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9539-7

Keywords

Navigation