Skip to main content
Log in

Rapid asymmetric reduction of ethyl 4-chloro-3-oxobutanoate using a thermostabilized mutant of ketoreductase ChKRED20

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE) is an important chiral intermediate for the synthesis of “blockbuster” drug statins. The carbonyl reductase ChKRED20 from Chryseobacterium sp. CA49 was found to catalyze the bio-reductive production of (S)-CHBE with excellent stereoselectivity (>99.5 % ee). Perceiving a capacity for improvement, we sought to increase the thermostability of ChKRED20 to allow a higher reaction temperature. After one round of error-prone PCR (epPCR) library screening followed by the combination of beneficial mutations, a triple-mutant MC135 was successfully achieved with substantially enhanced thermostablity. The activity of MC135 at 50 °C was similar to the wild type. However, at its temperature optima of 65 °C, the mutant displayed 63 % increase of activity compared to the wild type and remained >95 % activity after being incubated for 15 days, while the wild type had a half-life of 11.9 min at 65 °C. At a substrate/catalyst ratio of 100 (w/w), the mutant catalyzed the complete conversion of 300 g/l substrate within 1 h to yield enantiopure (S)-CHBE with an isolated yield of 95 %, corresponding to a space-time yield of 1824 mM/h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Babu MM (2003) NCI: a server to identify non-canonical interactions in protein structures. Nucleic Acids Res 31(13):3345–3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(W1):W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194

    Article  CAS  PubMed  Google Scholar 

  • Chen S-Y, Yang C-X, Wu J-P, Xu G, Yang L-R (2013) Multi-enzymatic biosynthesis of chiral β-hydroxy nitriles through co-expression of oxidoreductase and halohydrin dehalogenase. Adv Synth Catal 355(16):3179–3190

    Article  CAS  Google Scholar 

  • Giver L, Gershenson A, Freskgard P-O, Arnold FH (1998) Directed evolution of a thermostable esterase. Proc Natl Acad Sci U S A 95:12809–12813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg K, Schroer K, Lutz S, Liese A (2007) Biocatalytic ketone reduction-a powerful tool for the production of chiral alcohols-part I: processes with isolated enzymes. Appl Microbiol Biotechnol 76(2):237–248

    Article  CAS  PubMed  Google Scholar 

  • Gooding OW, Voladr R, Bautista A, Hopkins T (2010) Development of a practical biocatalytic process for (R)-2-methylpentanol. Org Process Res Dev 14(1):119–126

    Article  CAS  Google Scholar 

  • Hirokawa K, Ichiyanagi A, Kajiyama N (2008) Enhancement of thermostability of fungal deglycating enzymes by directed evolution. Appl Microbiol Biotechnol 78:775–781

    Article  CAS  PubMed  Google Scholar 

  • Hollmann F, Arends IWCE, Holtmann D (2011) Enzymatic reductions for the chemist. Green Chem 13:2285–2314

    Article  CAS  Google Scholar 

  • Huisman GW, Liang J, Krebber A (2010) Practical chiral alcohol manufacture using ketoreductases. Curr Opin Chem Biol 14(2):122–129

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Park HJ, Uhm K-N, Kim D, Kim H-K (2010) Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxy butanoate using a Saccharomyces cerevisiae reductase: enantioselectivity and enzyme–substrate docking studies. Biochim Biophys Acta 1804(9):1841–1849

    Article  CAS  PubMed  Google Scholar 

  • Kaluzna IA, Feske BD, Wittayanan W, Ghiviriga I, Stewart JD (2005) Stereoselective, biocatalytic reductions of α-chloro-β-keto esters. J Org Chem 70(1):342–345

    Article  CAS  PubMed  Google Scholar 

  • Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37:D387–D392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kita K, Fukura T, Nakase K, Okamoto K, Yanase H, Kataoka M, Shimizu S (1999) Cloning, overexpression, and mutagenesis of the Sporobolomyces salmonicolor AKU4429 gene encoding a new aldehyde reductase, which catalyzes the stereoselective reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate. Appl Environ Microbiol 65(12):5207–5211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kizaki N, Yasohara Y, Hasegawa J, Wada M, Kataoka M, Shimizu S (2001) Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 55(5):590–595

    Article  CAS  PubMed  Google Scholar 

  • Kosjek B, Nti-Gyabaah J, Telari K, Dunne L, Moore JC (2008) Preparative asymmetric synthesis of 4,4-dimethoxytetrahydro-2H-pyran-3-ol with a ketone reductase and in situ cofactor recycling using glucose dehydrogenase. Org Process Res Dev 12(4):584–588

    Article  CAS  Google Scholar 

  • Lee S-H, Park O-J (2009) Uses and production of chiral 3-hydroxy-gamma-butyrolactones and structurally related chemicals. Appl Microbiol Biotechnol 84(5):817–828

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Mundorff E, Voladri R, Jenne S, Gilson L, Conway A, Krebber A, Wong J, Huisman G, Truesdell S, Lalonde J (2010) Highly enantioselective reduction of a small heterocyclic ketone: biocatalytic reduction of tetrahydrothiophene-3-one to the corresponding (R)-alcohol. Org Process Res Dev 14(1):188–192

    Article  CAS  Google Scholar 

  • Liu Y, Tang TX, Pei XQ, Zhang C, Wu ZL (2014) Identification of ketone reductase ChKRED20 from the genome of Chryseobacterium sp CA49 for highly efficient anti-Prelog reduction of 3,5-bis(trifluoromethyl)acetophenone. J Mol Catal B Enzym 102:1–8

    Article  CAS  Google Scholar 

  • Liu Z-Q, Ye J-J, Shen Z-Y, Hong H-B, Yan J-B, Lin Y, Chen Z-X, Zheng Y-G, Shen Y-C (2015) Upscale production of ethyl (S)-4-chloro-3-hydroxybutanoate by using carbonyl reductase coupled with glucose dehydrogenase in aqueous-organic solvent system. Appl Microbiol Biotechnol 99(5):2119–2129

    Article  CAS  PubMed  Google Scholar 

  • Ma SK, Gruber J, Davis C, Newman L, Gray D, Wang A, Grate J, Huisman GW, Sheldon RA (2010) A green-by-design biocatalytic process for atorvastatin intermediate. Green Chem 12(1):81–86

    Article  CAS  Google Scholar 

  • McLachlan MJ, Johannes TW, Zhao H (2008) Further improvement of phosphite dehydrogenase thermostability by saturation mutagenesis. Biotechnol Bioeng 99(2):268–274

    Article  CAS  PubMed  Google Scholar 

  • Moore JC, Pollard DJ, Kosjek B, Devine PN (2007) Advances in the enzymatic reduction of ketones. Acc Chem Res 40(12):1412–1419

    Article  CAS  PubMed  Google Scholar 

  • Ni Y, Xu JH (2012) Biocatalytic ketone reduction: a green and efficient access to enantiopure alcohols. Biotechnol Adv 30:1279–1288

    Article  CAS  PubMed  Google Scholar 

  • Patel RN (2008) Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coord Chem Rev 252:659–701

    Article  CAS  Google Scholar 

  • Pei XQ, Yi ZL, Tang CG, Wu ZL (2011) Three amino acid changes contribute markedly to the thermostability of beta-glucosidase BglC from Thermobifida fusca. Bioresour Technol 102(3):3337–3342

    Article  CAS  PubMed  Google Scholar 

  • Pennacchio A, Sannino V, Sorrentino G, Rossi M, Raia CA, Esposito L (2013) Biochemical and structural characterization of recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius highly enantioselective on diaryl diketone benzil. Appl Microbiol Biotechnol 97(9):3949–3964

    Article  CAS  PubMed  Google Scholar 

  • Qiu L, Qi J, Pai C-C, Chan S, Zhou Z, Choi MCK, Chan ASC (2002) Synthesis of novel diastereomeric diphosphine ligands and their applications in asymmetric hydrogenation reactions. Org Lett 4(26):4599–4602

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues RC, Berenguer-Murcia A, Fernandez-Lafuente R (2011) Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Adv Synth Catal 353(13):2216–2238

    Article  CAS  Google Scholar 

  • Rodrigues RC, Ortiz C, Berenguer-Murcia A, Torres R, Fernandez-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42(15):6290–6307

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Kataoka M, Katoh M, Morikawa T, Miyoshi T, Yamada H (1990) Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by a microbial aldehyde reductase in an organic solvent-water diphasic system. Appl Environ Microbiol 56(8):2374–2377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solano DM, Hoyos P, Hernáiz MJ, Alcántara AR, Sánchez-Montero JM (2012) Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs. Bioresour Technol 115:196–207

    Article  Google Scholar 

  • Tang T-X, Liu Y, Wu Z-L (2014) Characterization of a robust anti-Prelog short-chain dehydrogenase/reductase ChKRED20 from Chryseobacterium sp. CA49. J Mol Catal B Enzym 105:82–88

    Article  CAS  Google Scholar 

  • Tina KG, Bhadra R, Srinivasan N (2007) PIC: protein interactions calculator. Nucleic Acids Res 35:W473–W476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieille C, Gregory Zeikus J (1996) Thermozymes: Identifying molecular determinants of protein structural and functional stability. Trends Biotechnol 14(6):183–190

  • Vieira DS, Degrève L, Ward RJ (2009) Characterization of temperature dependent and substratebinding cleft movements in Bacillus circulans family 11 xylanase: A molecular dynamics investigation. Biochimica et Biophysica Acta (BBA) - General Subjects 1790(10):1301–1306

  • Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269(4):631–643

  • Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8(1):52–56

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Liu Y, Fang L, Jiang X, Jing K, Cen P (2006) Construction of a two-strain system for asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to (S)-4-chloro-3-hydroxybutanoate ethyl ester. Appl Microbiol Biotechnol 70(1):40–46

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Ouyang P, Ying H (2011) Biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate ester: recent advances and future perspectives. Appl Microbiol Biotechnol 89(3):513–522

    Article  CAS  PubMed  Google Scholar 

  • You ZY, Liu ZQ, Zheng YG (2014) Characterization of a newly synthesized carbonyl reductase and construction of a biocatalytic process for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate with high space-time yield. Appl Microbiol Biotechnol 98(4):1671–1680

    Article  CAS  PubMed  Google Scholar 

  • Zhang SB, Pei XQ, Wu ZL (2012) Multiple amino acid substitutions significantly improve the thermostability of feruloyl esterase A from Aspergillus niger. Bioresour Technol 117:140–147

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, van der Donk WA (2003) Regeneration of cofactors for use in biocatalysis. Curr Opin Biotechnol 14(6):583–589

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Ganggang Wang and Mr. Yun Jin of the Chengdu Institute of Biology for the size-exclusion chromatography analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Liu Wu.

Ethics declarations

Funding

This study was funded by the National Natural Science Foundation of China (21372216 and 21572220), the Open Fund of Key Laboratory of Environmental and Applied Microbiology (KLCAS-2014-05 and KLCAS-2015-01), and the Key Research Program (KGZD-EW-606-14) of the Chinese Academy of Sciences.

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, FJ., Pei, XQ., Ren, ZQ. et al. Rapid asymmetric reduction of ethyl 4-chloro-3-oxobutanoate using a thermostabilized mutant of ketoreductase ChKRED20. Appl Microbiol Biotechnol 100, 3567–3575 (2016). https://doi.org/10.1007/s00253-015-7200-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7200-2

Keywords

Navigation