Skip to main content
Log in

Restriction modification system analysis and development of in vivo methylation for the transformation of Clostridium cellulovorans

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Clostridium cellulovorans, a cellulolytic bacterium producing butyric and acetic acids as main fermentation products, is a promising host for biofuel production from cellulose. However, the transformation method of C. cellulovorans was not available, hindering its genetic engineering. To overcome this problem, its restriction modification (RM) systems were analyzed and a novel in vivo methylation was established for its successful transformation in the present study. Specifically, two RM systems, Cce743I and Cce743II, were determined. R. Cce743I has the same specificity as LlaJI, recognizing 5′-GACGC-3′ and 5′-GCGTC-3′, while M. Cce743I methylates the external cytosine in the strand (5′-GACGmC-3′). R. Cce743II, has the same specificity as LlaI, recognizing 5′-CCAGG-3′ and 5′-CCTGG-3′, while M. Cce743II methylates the external cytosine of both strands. An in vivo methylation system, expressing M. Cce743I and M. Cce743II from C. cellulovorans in Escherichia coli, was then established to protect plasmids used in electrotransformation. Transformants expressing an aldehyde/alcohol dehydrogenase (adhE2), which converted butyryl-CoA to n-butanol and acetyl-CoA to ethanol, were obtained. For the first time, an effective transformation method was developed for metabolic engineering of C. cellulovorans for biofuel production directly from cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl. Environ. Microbiol. 77:8288–8894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Azeddoug H, Reysset G (1991) Recognition sequence of a new methyl-specific restriction system from Clostridium acetobutylicum strain ABKn8. FEMS Microbiol. Lett. 78:153–156

    Article  CAS  Google Scholar 

  • Cui G, Hong W, Zhang J, Li W, Feng Y, Liu Y, Cui Q (2012) Targeted gene engineering in Clostridium cellulolyticum H10 without methylation. J. Microbiol. Methods 89:201–208

    Article  CAS  PubMed  Google Scholar 

  • Davis TO, Henderson I, Brehm JK, Minton NP (2000) Development of a transformation and gene reporter system for group II, non-proteolytic Clostridium botulinum type B strains. J. Mol. Microbiol. Biotechnol. 2:59–69

    CAS  PubMed  Google Scholar 

  • Dong H, Zhang Y, Dai Z, Li Y (2010) Engineering Clostridium strain to accept unmethylated DNA. PLoS One 5:e9038. doi:10.1371/journal.pone.0009038

    Article  PubMed Central  PubMed  Google Scholar 

  • Elhai J, Vepritskiy A, Muro-Pastor A, Flores E, Wolk C (1997) Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J. Bacteriol. 179:1998–2005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guedon E, Desvaux M, Petitdemange H (2002) Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl. Environ. Microbiol. 68:53–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guss AM, Olson DG, Caiazza NC, Lynd LR (2012) Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum. \Biotechnol Biofuels 5:30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J. Microbiol. Methods 70:452–464

    Article  CAS  PubMed  Google Scholar 

  • Heap JT, Pennington OJ, Cartman ST, Minton NP (2009) A modular system for Clostridium shuttle plasmids. J. Microbiol. Methods 78:79–85

    Article  CAS  PubMed  Google Scholar 

  • Higashide W, Li Y, Yang Y, Liao JC (2011) Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl. Environ. Microbiol. 77:2727–2733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jang Y-S, Malaviya A, Cho C, Lee J, Lee SY (2012) Butanol production from renewable biomass by clostridia. Bioresour. Technol. 123:653–663

    Article  CAS  PubMed  Google Scholar 

  • Jennert KC, Tardif C, Young DI, Young M (2000) Gene transfer to Clostridium cellulolyticum ATCC 35319. Microbiology 146(Pt 12):3071–3080

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Mermelstein LD, Bennett GN, Papoutsakis ET (1992) Vector construction, transformation, and gene amplification in Clostridium acetobutylicum ATCC 824. Ann. N. Y. Acad. Sci. 665:39–51

    Article  CAS  PubMed  Google Scholar 

  • Lesiak JM, Liebl W, Ehrenreich A (2014) Development of an in vivo methylation system for the solventogen Clostridium saccharobutylicum NCP 262 and analysis of two endonuclease mutants. J. Biotechnol. 188C:97–99

    Article  Google Scholar 

  • Lin L, Song H, Ji Y, He Z, Pu Y, Zhou J, Xu J (2010) Ultrasound-mediated DNA transformation in thermophilic Gram-positive anaerobes. PLoS One 5:e12582. doi:10.1371/journal.pone.0012582

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin YL, Blaschek HP (1984) Transformation of heat-treated Clostridium acetobutylicum protoplasts with pUB110 plasmid DNA. Appl. Environ. Microbiol. 48:737–742

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lütke-Eversloh T (2014) Application of new metabolic engineering tools for Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 98:5823–5837

    Article  PubMed  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38:522–550

    Article  CAS  Google Scholar 

  • Mermelstein LD, Papoutsakis ET (1993) In vivo methylation in Escherichia coli by the Bacillus subtilis phage ϕ3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 59:1077–1081

    PubMed Central  CAS  PubMed  Google Scholar 

  • Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 23:396–405

    Article  CAS  PubMed  Google Scholar 

  • Parisutham V, Kim TH, Lee SK (2014) Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Bioresour. Technol. 161:431–440

    Article  CAS  PubMed  Google Scholar 

  • Purdy D, O’Keeffe TAT, Elmore M, Herbert M, McLeod A, Bokori-Brown M, Ostrowski A, Minton NP (2002) Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol. Microbiol. 46:439–452

    Article  CAS  PubMed  Google Scholar 

  • Pyne ME, Moo-Young M, Chung DA, Chou CP (2013) Development of an electrotransformation protocol for genetic manipulation of Clostridium pasteurianum. Biotechnol Biofuels 6:50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pyne ME, Bruder M, Moo-Young M, Chung DA, Chou CP (2014) Technical guide for genetic advancement of underdeveloped and intractable Clostridium. Biotechnol. Adv. 32:623–641

    Article  CAS  PubMed  Google Scholar 

  • Roberts RJ, Vincze T, Posfai J, Macelis D (2010) REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 38:D234–D236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roberts RJ, Vincze T, Posfai J, Macelis D (2015) REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 43:D298–D299

    Article  PubMed Central  PubMed  Google Scholar 

  • Sleat R, Mah RA, Robinson R (1984) Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov. Appl. Environ. Microbiol. 48:88–93

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamaru Y, Miyake H, Kuroda K, Nakanishi A, Kawade Y, Yamamoto K, Uemura M, Fujita Y, Doi RH, Ueda M (2010a) Genome sequence of the cellulosome-producing mesophilic organism Clostridium cellulovorans 743B. J. Bacteriol. 192:901–902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamaru Y, Miyake H, Kuroda K, Ueda M, Doi RH (2010b) Comparative genomics of the mesophilic cellulosome-producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing. Environ. Technol. 31:889–903

    Article  CAS  PubMed  Google Scholar 

  • Tock MR, Dryden DTF (2005) The biology of restriction and anti-restriction. Curr Opin Microbiol 8:466–472

    Article  CAS  PubMed  Google Scholar 

  • Tyurin MV, Desai SG, Lynd LR (2004) Electrotransformation of Clostridium thermocellum. Appl. Environ. Microbiol. 70:883–890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, Yang X, Chen C-C, Yang S-T (2014) Engineering clostridia for butanol production from biorenewable resources: from cells to process integration. Curr Opin Chem Eng 6:43–54

    Article  Google Scholar 

  • Xu M, Zhao J, Yu L, Tang I-C, Xue C, Yang S-T (2015) Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production. Appl. Microbiol. Biotechnol. 99:1011–1022

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Xu M, Yang S-T (2015) Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Metab. Eng. 32:39–48

    Article  PubMed  Google Scholar 

  • Yu M, Du Y, Jiang W, Chang W-L, Yang S-T, Tang I-C (2012) Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum. Appl. Microbiol. Biotechnol. 93:881–889

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Xu M, Tang I-C, Yang S-T (2015) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose. Biotechnol. Bioeng. 112:2134–2141

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Zhang Y, Tang I-C, Yang S-T (2011) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab. Eng. 13:373–382

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Wang W, Deng A, Sun Z, Zhang Y, Liang Y, Che Y, Wen T (2012) A mimicking-of-DNA-methylation-patterns pipeline for overcoming the restriction barrier of bacteria. PLoS Genet. 8:e1002987. doi:10.1371/journal.pgen.1002987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation STTR program (IIP-1026648), Advanced Research Projects Agency-Energy (DE-AR0000095), and the Department of Energy, EERE Bioenergy Technologies Incubator program (DE-EE0007005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Tian Yang.

Ethics declarations

This research does not involve human participants or animals.

Conflict of interest

The authors declare no conflict of interests.

Electronic Supplementary Material

ESM 1

(PDF 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Xu, M. & Yang, ST. Restriction modification system analysis and development of in vivo methylation for the transformation of Clostridium cellulovorans . Appl Microbiol Biotechnol 100, 2289–2299 (2016). https://doi.org/10.1007/s00253-015-7141-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7141-9

Keywords

Navigation