Skip to main content
Log in

Synergistic streptococcal phage λSA2 and B30 endolysins kill streptococci in cow milk and in a mouse model of mastitis

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bovine mastitis results in billion dollar losses annually in the USA alone. Streptococci are among the most relevant causative agents of this disease. Conventional antibiotic therapy is often unsuccessful and contributes to development of antibiotic resistance. Bacteriophage endolysins represent a new class of antimicrobials against these bacteria. In this work, we characterized the endolysins (lysins) of the streptococcal phages λSA2 and B30 and evaluated their potential as anti-mastitis agents. When tested in vitro against live streptococci, both enzymes exhibited near-optimum lytic activities at ionic strengths, pH, and Ca2+ concentrations consistent with cow milk. When tested in combination in a checkerboard assay, the lysins were found to exhibit strong synergy. The λSA2 lysin displayed high activity in milk against Streptococcus dysgalactiae (reduction of CFU/ml by 3.5 log units at 100 μg/ml), Streptococcus agalactiae (2 log), and Streptococcus uberis (4 log), whereas the B30 lysin was less effective. In a mouse model of bovine mastitis, both enzymes significantly reduced intramammary concentrations of all three streptococcal species (except for B30 vs. S. dysgalactiae), and the effects on mammary gland wet weights and TNFα concentrations were consistent with these findings. Unexpectedly, the synergistic effect determined for the two enzymes in vitro was not observed in the mouse model. Overall, our results illustrate the potential of endolysins for treatment of Streptococcus-induced bovine mastitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JC, Craven N (1984) Assessment in the mouse of cefoperazone as a treatment for mastitis. Vet Rec 114:607–612

    Article  CAS  PubMed  Google Scholar 

  • Apparao MD, Ruegg PL, Lago A, Godden S, Bey R, Leslie K (2009) Relationship between in vitro susceptibility test results and treatment outcomes for gram-positive mastitis pathogens following treatment with cephapirin sodium. J Dairy Sci 92:2589–2597. doi:10.3168/jds.2008-1693

    Article  CAS  PubMed  Google Scholar 

  • Bateman A, Rawlings ND (2003) The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends BiochemSci 28:234–237

    Article  CAS  Google Scholar 

  • Becker SC, Foster-Frey J, Donovan DM (2008) The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiol Lett 287:185–191

    Article  CAS  PubMed  Google Scholar 

  • Becker SC, Foster-Frey J, Stodola AJ, Anacker D, Donovan DM (2009) Differentially conserved staphylococcal SH3b_5 cell wall binding domains confer increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin domain. Gene 443:32–41

    Article  CAS  PubMed  Google Scholar 

  • Blowey RW, Edmondson P (2010) Mastitis control in dairy herds. CABI, Cambridge

    Book  Google Scholar 

  • Borysowski J, Weber-Dabrowska B, Gorski A (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med(Maywood) 231:366–377

    CAS  Google Scholar 

  • Bramley AJ, Foster R (1990) Effects of lysostaphin on Staphylococcus aureus infections of the mouse mammary gland. Res Vet Sci 49:120–121

    CAS  PubMed  Google Scholar 

  • Brouillette E, Malouin F (2005) The pathogenesis and control of Staphylococcus aureus-induced mastitis: study models in the mouse. Microbes Infect 7:560–568

    Article  PubMed  Google Scholar 

  • Brouillette E, Grondin G, Lefebvre C, Talbot BG, Malouin F (2004) Mouse mastitis model of infection for antimicrobial compound efficacy studies against intracellular and extracellular forms of Staphylococcus aureus. Vet Microbiol 101:253–262

    Article  CAS  PubMed  Google Scholar 

  • Calvinho LF, Almeida RA, Oliver SP (1998) Potential virulence factors of Streptococcus dysgalactiae associated with bovine mastitis. Vet Microbiol 61:93–110

    Article  CAS  PubMed  Google Scholar 

  • Cattell MB, Dinsmore RP, Belschner AP, Carmen J, Goodell G (2001) Environmental gram-positive mastitis treatment: in vitro sensitivity and bacteriologic cure. J Dairy Sci 84:2036–2043

    Article  CAS  PubMed  Google Scholar 

  • Celia LK, Nelson D, Kerr DE (2008) Characterization of a bacteriophage lysin (Ply700) from Streptococcus uberis. Vet Microbiol 130:107–117

    Article  CAS  PubMed  Google Scholar 

  • Chandler RL (1970a) Experimental bacterial mastitis in the mouse. J Med Microbiol 3:273–282

    Article  CAS  PubMed  Google Scholar 

  • Chandler RL (1970b) Ultrastructural pathology of mastitis in the mouse. A study of experimental staphylococcal and streptococcal infections. Br J Exp Pathol 51:639–645

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chandler RL (1971) Studies on experimental mouse mastitis relative to the assessment of pharmaceutical substances. J Comp Pathol 81:507–514

    Article  CAS  PubMed  Google Scholar 

  • Deluyker HA, Van Oye SN, Boucher JF (2005) Factors affecting cure and somatic cell count after pirlimycin treatment of subclinical mastitis in lactating cows. J Dairy Sci 88:604–614

    Article  CAS  PubMed  Google Scholar 

  • Demon D, Ludwig C, Breyne K, Guede D, Dorner JC, Froyman R, Meyer E (2012) The intramammary efficacy of first generation cephalosporins against Staphylococcus aureus mastitis in mice. Vet Microbiol 160:141–150. doi:10.1016/j.vetmic.2012.05.017

    Article  CAS  PubMed  Google Scholar 

  • Demon D, Breyne K, Schiffer G, Meyer E (2013) Short communication: Antimicrobial efficacy of intramammary treatment with a novel biphenomycin compound against Staphylococcus aureus, Streptococcus uberis, and Escherichia coli-induced mouse mastitis. J Dairy Sci 96:7082–7087. doi:10.3168/jds.2013-7011

    Article  CAS  PubMed  Google Scholar 

  • Diarra MS, Petitclerc D, Deschenes E, Lessard N, Grondin G, Talbot BG, Lacasse P (2003) Lactoferrin against Staphylococcus aureus mastitis. Lactoferrin alone or in combination with penicillin G on bovine polymorphonuclear function and mammary epithelial cells colonisation by Staphylococcus aureus. Vet Immunol and Immunopathol 95:33–42

    Article  CAS  Google Scholar 

  • Donovan DM (2007) Bacteriophage and peptidoglycan degrading enzymes with antimicrobial applications. Recent Pat Biotechnol 1:113–122

    Article  CAS  PubMed  Google Scholar 

  • Donovan DM, Foster-Frey J (2008) LambdaSa2 prophage endolysin requires Cpl-7-binding domains and amidase-5 domain for antimicrobial lysis of streptococci. FEMS Microbiol Lett 287:22–33

    Article  CAS  PubMed  Google Scholar 

  • Donovan DM, Dong S, Garrett W, Rousseau GM, Moineau S, Pritchard DG (2006a) Peptidoglycan hydrolase fusions maintain their parental specificities. Appl Environ Microbiol 72:2988–2996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donovan DM, Foster-Frey J, Dong S, Rousseau GM, Moineau S, Pritchard DG (2006b) The cell lysis activity of the Streptococcus agalactiae bacteriophage B30 endolysin relies on the cysteine, histidine-dependent amidohydrolase/peptidase domain. Appl Environ Microbiol 72:5108–5112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donovan DM, Lardeo M, Foster-Frey J (2006c) Lysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin. FEMS Microbiol Lett 265:133–139

    Article  CAS  PubMed  Google Scholar 

  • Donovan DM, Becker SC, Dong S, Baker JR, Foster-Frey J, Pritchard DG (2009) Peptidoglycan hydrolase enzyme fusions for treating multi-drug resistant pathogens. Biotech International 21:6–10

    Google Scholar 

  • Fischetti VA (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13:491–496

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Yu FQ, Luo LP, He JZ, Hou RG, Zhang HQ, Li SM, Su JL, Han B (2012) Antibiotic resistance of Streptococcus agalactiae from cows with mastitis. Vet J 194:423–424. doi:10.1016/j.tvjl.2012.04.020

    Article  CAS  PubMed  Google Scholar 

  • Garcia P, Garcia JL, Garcia E, Sanchez-Puelles JM, Lopez R (1990) Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Gene 86:81–88

    Article  CAS  PubMed  Google Scholar 

  • Gaucheron F (2005) The minerals of milk. Reprod Nutr Dev 45:473–483. doi:10.1051/rnd:2005030

    Article  CAS  PubMed  Google Scholar 

  • Gehring R, Smith GW (2006) An overview of factors affecting the disposition of intramammary preparations used to treat bovine mastitis. J Vet Pharmacol Ther 29:237–241

    Article  CAS  PubMed  Google Scholar 

  • Gilmer DB, Schmitz JE, Euler CW, Fischetti VA (2013) Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 57:2743–2750. doi:10.1128/AAC.02526-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gruet P, Maincent P, Berthelot X, Kaltsatos V (2001) Bovine mastitis and intramammary drug delivery: review and perspectives. Adv Drug Deliv Rev 50:245–259

    Article  CAS  PubMed  Google Scholar 

  • Hermoso JA, Garcia JL, Garcia P (2007) Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol 10:461–472

    Article  CAS  PubMed  Google Scholar 

  • Kerr DE, Plaut K, Bramley AJ, Williamson CM, Lax AJ, Moore K, Wells KD, Wall RJ (2001) Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice. Nat Biotechnol 19:66–70

    Article  CAS  PubMed  Google Scholar 

  • Kuang Y, Jia H, Miyanaga K, Tanji Y (2009) Effect of milk on antibacterial activity of tetracycline against Escherichia coli and Staphylococcus aureus isolated from bovine mastitis. Appl Microbiol Biotechnol 84:135–142

    Article  CAS  PubMed  Google Scholar 

  • Lammers A, van Vorstenbosch CJ, Erkens JH, Smith HE (2001) The major bovine mastitis pathogens have different cell tropisms in cultures of bovine mammary gland cells. Vet Microbiol 80:255–265

    Article  CAS  PubMed  Google Scholar 

  • Leigh JA (1999) Streptococcus uberis: a permanent barrier to the control of bovine mastitis? Vet J 157:225–238. doi:10.1053/tvjl.1998.0298

    Article  CAS  PubMed  Google Scholar 

  • Lewis RE, Diekema DJ, Messer SA, Pfaller MA, Klepser ME (2002) Comparison of Etest, chequerboard dilution and time-kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species. J Antimicrob Chemother 49:345–351

    Article  CAS  PubMed  Google Scholar 

  • Loeffler JM, Fischetti VA (2003) Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains. Antimicrob Agents Chemother 47:375–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172

    Article  CAS  PubMed  Google Scholar 

  • Lonnerdal B, Keen CL, Hurley LS (1981) Iron, copper, zinc, and manganese in milk. Annu Rev Nutr 1:149–174. doi:10.1146/annurev.nu.01.070181.001053

    Article  CAS  PubMed  Google Scholar 

  • Lopez R, Garcia E (2004) Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 28:553–580

    Article  CAS  PubMed  Google Scholar 

  • Notebaert S, Meyer E (2006) Mouse models to study the pathogenesis and control of bovine mastitis. A review. Vet Q 28:2–13

    Article  CAS  PubMed  Google Scholar 

  • Obeso JM, Martinez B, Rodriguez A, Garcia P (2008) Lytic activity of the recombinant staphylococcal bacteriophage PhiH5 endolysin active against Staphylococcus aureus in milk. Int J Food Microbiol 128:212–218

    Article  CAS  PubMed  Google Scholar 

  • Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1. doi:10.1093/jac/dkg301

    Article  CAS  PubMed  Google Scholar 

  • O’Flaherty S, Coffey A, Meaney WJ, Fitzgerald GF, Ross RP (2005) Inhibition of bacteriophage K proliferation on Staphylococcus aureus in raw bovine milk. Lett Appl Microbiol 41:274–279

    Article  PubMed  Google Scholar 

  • Pastagia M, Euler C, Chahales P, Fuentes-Duculan J, Krueger JG, Fischetti VA (2011) A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive Staphylococcus aureus strains. Antimicrob Agents Chemother 55:738–744. doi:10.1128/AAC.00890-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ponting CP, Aravind L, Schultz J, Bork P, Koonin EV (1999) Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 289:729–745

    Article  CAS  PubMed  Google Scholar 

  • Pritchard DG, Dong S, Baker JR, Engler JA (2004) The bifunctional peptidoglycan lysin of Streptococcus agalactieae bacteriophage B30. Microbiology 150:2079–2087

    Article  CAS  PubMed  Google Scholar 

  • Pritchard DG, Dong S, Kirk MC, Cartee RT, Baker JR (2007) LambdaSa1 and LambdaSa2 prophage lysins of Streptococcus agalactiae. Appl Environ Microbiol 73:7150–7154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pyörälä S (2009) Treatment of mastitis during lactation. Ir Vet J 62(Suppl 4):S40–S44. doi:10.1186/2046-0481-62-S4-S40

    Article  PubMed Central  PubMed  Google Scholar 

  • Reichelt P, Schwarz C, Donzeau M (2006) Single step protocol to purify recombinant proteins with low endotoxin contents. Protein Expr Purif 46:483–488

    Article  CAS  PubMed  Google Scholar 

  • Rowson AD, Wang YQ, Aalseth E, Forsberg NE, Puntenney SB (2011) Effects of an immunomodulatory feed additive on the development of mastitis in a mouse infection model using four bovine-origin isolates. Animal 5(2):220–229. doi:10.1017/S1751731110001850

    Article  CAS  PubMed  Google Scholar 

  • Sanchez MS, Ford CW, Yancey RJ Jr (1994) Effect of tumor necrosis factor-alpha, interleukin-1 beta, and antibiotics on the killing of intracellular Staphylococcus aureus. J Dairy Sci 77:1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Schindler CA, Schuhardt VT (1964) Lysostaphin: a new bacteriolytic agent for the Staphylococcus. Proc Natl Acad Sci U S A 51:414–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmelcher M, Shabarova T, Eugster MR, Eichenseher F, Tchang VS, Banz M, Loessner MJ (2010) Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains. Appl Environ Microbiol 76:5745–5756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmelcher M, Donovan DM, Loessner MJ (2012a) Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7:1147–1171. doi:10.2217/fmb.12.97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmelcher M, Powell AM, Becker SC, Camp MJ, Donovan DM (2012b) Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol 78:2297–2305. doi:10.1128/AEM.07050-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuch R, Nelson D, Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418:884–889

    Article  CAS  PubMed  Google Scholar 

  • Sordillo LM, Streicher KL (2002) Mammary gland immunity and mastitis susceptibility. J Mammary Gland Biol Neoplasia 7:135–146

    Article  PubMed  Google Scholar 

  • Tenhagen BA, Koster G, Wallmann J, Heuwieser W (2006) Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J Dairy Sci 89:2542–2551. doi:10.3168/jds.S0022-0302(06)72330-X

    Article  CAS  PubMed  Google Scholar 

  • Wall RJ, Powell A, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, Wells KD, Talbot N, Hawk HW (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23:445–451

    Article  CAS  PubMed  Google Scholar 

  • Wall R, Powell A, Sohn E, Foster-Frey J, Bannerman D, Paape M (2009) Enhanced host immune recognition of mastitis causing Escherchia coli in CD-14 transgenic mice. Anim Biotechnol 20:1–14

    Article  CAS  PubMed  Google Scholar 

  • Walsh C (2003) Where will new antibiotics come from? Nat Rev Microbiol 1:65–70

    Article  CAS  PubMed  Google Scholar 

  • Webb BH, Johnson AH, Alford JA (1974) Fundamentals of dairy chemistry. AVI, Westport

    Google Scholar 

  • Whisstock JC, Lesk AM (1999) SH3 domains in prokaryotes. Trends Biochem Sci 24:132–133

    Article  CAS  PubMed  Google Scholar 

  • Wilson DJ, Gonzalez RN, Das HH (1997) Bovine mastitis pathogens in New York and Pennsylvania: prevalence and effects on somatic cell count and milk production. J Dairy Sci 80:2592–2598

    Article  CAS  PubMed  Google Scholar 

  • Yancey RJ Jr (1999) Vaccines and diagnostic methods for bovine mastitis: fact and fiction. Adv Vet Med 41:257–273

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Mentioning of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture (USDA). The USDA prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. USDA is an equal opportunity provider and employer.

Funding

This work was supported in part by National Institutes of Health grant 1 R01 AI075077-01A1; National Research Initiative grant 2007-35204-18395 and US State Department funds supporting US-Pakistani and US-Russian collaborations.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Statement regarding research on animals

All animal experiments were conducted in accordance with ARS Institutional Animal Care and Use Committee regulations and national animal care guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Schmelcher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmelcher, M., Powell, A.M., Camp, M.J. et al. Synergistic streptococcal phage λSA2 and B30 endolysins kill streptococci in cow milk and in a mouse model of mastitis. Appl Microbiol Biotechnol 99, 8475–8486 (2015). https://doi.org/10.1007/s00253-015-6579-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6579-0

Keywords

Navigation